if 3 tana tan b = 1 , prove that 2 cos( a+b) = cos (a-b)
Answers
Answered by
3
Step-by-step explanation:
WE KNOW THAT TAN CHANGES TO COS THEN ......
3TAN B 01, 2COS(A+B)=(A-B)
3COS B O1,2COS(A+B)=(A-B)
A+B=A-B
HENCE PROVES
Answered by
8
solution
==>
we have,
3 tana tanB = 1
3 sin a sin b / cosa cosB = 1
sin a sin b/ cos a cos b = 3/1
cos a cos b / sina SinB = 1/3
applying componendo- dividendo
cos a cos b + sinA sinb / cos a cos b - sin a sin b = 1+3 /1-3
cos ( a-b)/cos ( a+b) = 4/ 2
cos ( a-b) = 2 cos ( a+b)
hence proved
Similar questions