Math, asked by suparna04chowdhury, 4 months ago

if 3√x+(3√3375) ^3 =17 , then find the cube root of x-1026 is equal to​

Answers

Answered by pulakmath007
8

SOLUTION :-

GIVEN :-

 \sf{ \sqrt[3]{x +  { \bigg( \sqrt[3]{3375}  \bigg)}^{3} } = 17 }

TO DETERMINE :-

 \sf{  \sqrt[3]{x - 1026} }

EVALUATION :-

Here it is given that

 \sf{ \sqrt[3]{x +  { \bigg( \sqrt[3]{3375}  \bigg)}^{3} } = 17 }

Taking cube in both sides we get

 \sf{ {x +  { \bigg( \sqrt[3]{3375}  \bigg)}^{3} } =  {(17)}^{3}  }

 \implies \sf{ {x +  { \big( 15 \big)}^{3} } =  4913 }

 \implies \sf{ x +  3375 =  4913 }

 \implies \sf{ x  =  4913 - 3375 }

 \implies \sf{x = 1538}

 \therefore \:  \:  \:  \sf{  \sqrt[3]{x - 1026} }

 =  \sf{  \sqrt[3]{1538 - 1026} }

 =  \sf{  \sqrt[3]{512} }

  = \sf{  \sqrt[3]{(8 \times 8 \times 8)} }

 =  \sf{8}

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. 6x2 + x - 15 is divided by 3x + 5.

In each case, verify your answer.

https://brainly.in/question/17277773

2. How many 1/2 makes 3

https://brainly.in/question/28842345

Answered by Anonymous
4

✮ Question

\sf{If\:\:\sqrt[3]{x+\left(\sqrt[3]{3375}\right)^3}=17\:, Then\:find :\sqrt{x-1026}}

✮ Answer  

\sf{\sqrt{x-1026}=8}

✮ Explanation

\sf{\sqrt[3]{x+\left(\sqrt[3]{3375}\right)^3}=17}

\textsf { Take both sides of the equation to the power of 3}

\sf{\left(\sqrt[3]{x+\left(\sqrt[3]{3375}\right)^3}\right)^3=17^3}

\implies\sf{\left(\left(x+\left(\sqrt[3]{3375}\right)^3\right)^{\tfrac{1}{3}}\right)^3=4913}

\implies\sf{\left(x+\left(\sqrt[3]{3375}\right)^3\right)^{\tfrac{1}{3}\cdot \:3}=4913}

\implies\sf{x+\left(\sqrt[3]{3375}\right)^3=4913}

\sf{\implies x+3375=4913}

\implies\sf{x+3375-3375=4913-3375}

\implies\sf{x=1538}

\sf{Now \:\:Solve \:\:\sqrt[3]{x-1026} }

\implies\sf{\sqrt[3]{1538-1026}}

\implies\sf{\sqrt[3]{512}}

\implies\sf{\sqrt[3]{8^3}}

\Large\boxed{\implies\sf{8}}

Similar questions