Math, asked by rajsudhanshu9431, 11 months ago

If 3^x =4^x-1 ,then find x

Answers

Answered by letshelpothers9
16

Step-by-step explanation:

3^x = 4^x-1

3^x = 4^x / 4

of 4 * 3^x = 4^x

To solve this, let us take log on both sides. Taking log on both sides, we get

log 4 + x log 3  = x log 4

or x (log4-log3) = log 4

or x = log 4 / (log 4 - log 3)

log 4 = 0.6021 and log 3 = 0.4771

Thus, we get x = 0.6021 / (0.6021-0.4771) = 0.6021/0.125 = 4.8168

Thus, x = 4.8168.

Answered by AbhijithPrakash
16

Answer:

3^x=4^{x-1}\quad :\quad x=\frac{2\ln \left(2\right)}{\ln \left(\frac{4}{3}\right)}\quad \left(\mathrm{Decimal}:\quad x=4.81884\dots \right)

Step-by-step explanation:

3^x=4^{x-1}

\mathrm{If\:}f\left(x\right)=g\left(x\right)\mathrm{,\:then\:}\ln \left(f\left(x\right)\right)=\ln \left(g\left(x\right)\right)

\ln \left(3^x\right)=\ln \left(4^{x-1}\right)

\mathrm{Apply\:log\:rule}:\quad \log _a\left(x^b\right)=b\cdot \log _a\left(x\right)

\ln \left(3^x\right)=x\ln \left(3\right),\:\space\ln \left(4^{x-1}\right)=\left(x-1\right)\ln \left(4\right)

x\ln \left(3\right)=\left(x-1\right)\ln \left(4\right)

\mathrm{Simplify\:}\left(x-1\right)\ln \left(4\right)

\left(x-1\right)\ln \left(4\right)

\mathrm{Simplify}\:\ln \left(4\right)

\ln \left(4\right)

\mathrm{Rewrite\:}4\mathrm{\:in\:power-base\:form:}\quad 4=2^2

=\ln \left(2^2\right)

\mathrm{Apply\:log\:rule}:\quad \log _a\left(x^b\right)=b\cdot \log _a\left(x\right)

\ln \left(2^2\right)=2\ln \left(2\right)

=2\ln \left(2\right)

=2\ln \left(2\right)\left(x-1\right)

\mathrm{Solve\:}\:x\ln \left(3\right)=2\ln \left(2\right)\left(x-1\right)

x\ln \left(3\right)=2\ln \left(2\right)\left(x-1\right)

\mathrm{Expand\:}2\ln \left(2\right)\left(x-1\right)

2\ln \left(2\right)\left(x-1\right)

\mathrm{Apply\:the\:distributive\:law}:\quad \:a\left(b-c\right)=ab-ac

a=2\ln \left(2\right),\:b=x,\:c=1

=2\ln \left(2\right)x-2\ln \left(2\right)\cdot \:1

=2\ln \left(2\right)x-2\cdot \:1\cdot \ln \left(2\right)

\mathrm{Multiply\:the\:numbers:}\:2\cdot \:1=2

=2\ln \left(2\right)x-2\ln \left(2\right)

x\ln \left(3\right)=2\ln \left(2\right)x-2\ln \left(2\right)

\mathrm{Subtract\:}2\ln \left(2\right)x\mathrm{\:from\:both\:sides}

x\ln \left(3\right)-2\ln \left(2\right)x=2\ln \left(2\right)x-2\ln \left(2\right)-2\ln \left(2\right)x

\mathrm{Simplify}

x\ln \left(3\right)-2\ln \left(2\right)x=-2\ln \left(2\right)

\mathrm{Factor}\:x\ln \left(3\right)-2\ln \left(2\right)x

x\ln \left(3\right)-2\ln \left(2\right)x

\mathrm{Factor\:out\:common\:term\:}x

=x\left(\ln \left(3\right)-2\ln \left(2\right)\right)

\left(\ln \left(3\right)-2\ln \left(2\right)\right)x=-2\ln \left(2\right)

\mathrm{Divide\:both\:sides\:by\:}\ln \left(3\right)-2\ln \left(2\right)

\dfrac{\left(\ln \left(3\right)-2\ln \left(2\right)\right)x}{\ln \left(3\right)-2\ln \left(2\right)}=\dfrac{-2\ln \left(2\right)}{\ln \left(3\right)-2\ln \left(2\right)}

\mathrm{Simplify}

\dfrac{\left(\ln \left(3\right)-2\ln \left(2\right)\right)x}{\ln \left(3\right)-2\ln \left(2\right)}=\dfrac{-2\ln \left(2\right)}{\ln \left(3\right)-2\ln \left(2\right)}

\mathrm{Simplify\:}\dfrac{\left(\ln \left(3\right)-2\ln \left(2\right)\right)x}{\ln \left(3\right)-2\ln \left(2\right)}

\dfrac{\left(\ln \left(3\right)-2\ln \left(2\right)\right)x}{\ln \left(3\right)-2\ln \left(2\right)}

\mathrm{Cancel\:the\:common\:factor:}\:\ln \left(3\right)-2\ln \left(2\right)

=x

\mathrm{Simplify\:}\dfrac{-2\ln \left(2\right)}{\ln \left(3\right)-2\ln \left(2\right)}

\dfrac{-2\ln \left(2\right)}{\ln \left(3\right)-2\ln \left(2\right)}

\mathrm{Apply\:the\:fraction\:rule}:\quad \dfrac{-a}{-b}=\dfrac{a}{b}

\ln \left(3\right)-2\ln \left(2\right)=-\left(2\ln \left(2\right)-\ln \left(3\right)\right)

=\dfrac{2\ln \left(2\right)}{2\ln \left(2\right)-\ln \left(3\right)}

2\ln \left(2\right)-\ln \left(3\right)

\mathrm{Apply\:log\:rule}:\quad \:a\log _c\left(b\right)=\log _c\left(b^a\right)

2\ln \left(2\right)=\ln \left(2^2\right)

=\ln \left(2^2\right)-\ln \left(3\right)

\mathrm{Apply\:log\:rule}:\quad \log _c\left(a\right)-\log _c\left(b\right)=\log _c\left(\frac{a}{b}\right)

\ln \left(2^2\right)-\ln \left(3\right)=\ln \left(\frac{2^2}{3}\right)

=\ln \left(\dfrac{2^2}{3}\right)

2^2=4

=\ln \left(\dfrac{4}{3}\right)

=\dfrac{2\ln \left(2\right)}{\ln \left(\dfrac{4}{3}\right)}

x=\dfrac{2\ln \left(2\right)}{\ln \left(\dfrac{4}{3}\right)}

Attachments:

TANU81: Wonderful, +_0
rajsudhanshu9431: Have you any short method
AbhijithPrakash: Yeah, I have a short method but it'll be confusing..
rajsudhanshu9431: Keep it up
letshelpothers9: amazing answer
AbhijithPrakash: Thanks!!
Similar questions