If 3^x=4^y=12^z prove that z=xy/x+y
Answers
Answered by
1
Note:
★ a^m × a^n = a^(m + n)
★ a^m / a^n = a^(m - n)
★ a^m = b => a = b^(1/m)
★ a^(1/m) = b^m
★ [ a^m ]^n = a^(mn)
★ a^m × b^m = (a×b)^m
★ a^m / b^m = (a/b)^m
Solution:
Given: 3^x = 4^y = 12^z
To prove: z = xy(x + y)
Proof:
Let ,
3^x = 4^y = 12^z = k
If 3^x = k , then
3 = k^(1/x)
If 4^y = k , then
4 = k^(1/y)
If 12^z = k , then
12 = k^(1/z)
Now,
=> 12 = k^(1/z)
=> 3×4 = k^(1/z)
=> [ k^(1/x) ] × [ k^(1/y) ] = k^(1/z)
=> k^(1/x + 1/y) = k^(1/z)
=> 1/x + 1/y = 1/z
=> (y + x)xy = 1/z
=> 1/z = (x + y)/xy
=> z = xy/(x + y)
Hence proved .
Similar questions