Math, asked by sabnamsultana69087, 10 months ago

. If 3^x= 4^y = 12^z then the value of z is-
(a)xy/x+y (b)xy/x-y (c)x/x+y (d)y/x+y​

Answers

Answered by shadowsabers03
7

Let,

\longrightarrow\sf{3^x=4^y=12^z=k}

Then we have,

\longrightarrow\sf{3^x=k\quad\implies\quad x=\dfrac{\log k}{\log 3}}

\longrightarrow\sf{4^y=k\quad\implies\quad y=\dfrac{\log k}{\log 4}}

\longrightarrow\sf{12^z=k\quad\implies\quad z=\dfrac{\log k}{\log 12}}

Hence,

\longrightarrow\sf{z=\dfrac{\log k}{\log 12}}

\longrightarrow\sf{z=\dfrac{\log k}{\log(3\times4)}}

Since \sf{\log(ab)=\log a+\log b,}

\longrightarrow\sf{z=\dfrac{\log k}{\log3+\log4}}

\longrightarrow\sf{z=\left[\dfrac{\log 3+\log4}{\log k}\right]^{-1}}

\longrightarrow\sf{z=\left[\dfrac{\log 3}{\log k}+\dfrac{\log4}{\log k}\right]^{-1}}

\longrightarrow\sf{z=\left[\dfrac{1}{x}+\dfrac{1}{y}\right]^{-1}}

\longrightarrow\sf{z=\left[\dfrac{x+y}{xy}\right]^{-1}}

\longrightarrow\sf{\underline{\underline{z=\dfrac{xy}{x+y}}}}

Hence (a) is the answer.

Similar questions