Math, asked by kunchalabhagyalakshm, 1 month ago

if 3^x=m ,then the value of 10^x log base 10 ^3+2 log base 10 ^3 is​

Answers

Answered by user0888
20

Property of Logarithms

\log_{a}p+\log_{a}q=\log_{a}pq\ \text{[Addition of Logarithms]}

\log_{a}p-\log_{a}q=\log_{a}\dfrac{p}{q}\ \text{[Subtraction of Logarithms]}

\log_{a}p^{q}=q\log p\ \text{[Logarithms of Exponents]}

\log_{a}p=\dfrac{\log_{t}p}{\log_{t}a}\ \text{[Change of Base Formula]}

Appropriate Question

If 3^{x}=m, then the value of 10^{x\log_{10}3+2\log_{10}3}.

\text{(Given\ Condition)}

3^{x}=m\Leftrightarrow x=\log_{3}m

Solution

\text{(Given Expression)}

=10^{x\log_{10}3+2\log_{10}3}

Let's apply the property of logarithms.

\log_{10}\text{(Given Expression)}

=\log_{10}10^{x\log_{10}3+2\log_{10}3}

=\boxed{(x\log_{10}3+2\log_{10}3)}\log_{10}10 [by ⓒ]

=\boxed{\log _{3}m}\cdot \log_{10}3+2\log_{10}3 [by ①]

=\boxed{\dfrac{\log_{10} m}{\cancel{\log_{10}3}} \cdot \dfrac{\cancel{\log_{10}3}}{\log_{10}10} }+2\log_{10}3 [by ⓓ]

=\dfrac{\log_{10}m}{\log_{10}10}+2\log_{10}3

=\boxed{\log_{10}m}+2\log_{10}3 [by ⓓ]

=\log_{10}m+\log_{10}\boxed{3^{2}} [by ⓒ]

=\log_{10}\boxed{9m} [by ⓐ]

\log_{10}\text{(Given Expression)}=\log_{10}9m

\implies \text{(Given Expression)}=9m

So, the required answer is 9m.

Similar questions