If =30°, then tan2= 21−2
Answers
Answered by
0
Step-by-step explanation:
The given equation is :
tan{\theta}=\frac{2tan{\theta}}{1-tan^{2}{\theta}}tanθ=
1−tan
2
θ
2tanθ
Now, if {\theta}=30^{{\circ}}θ=30
∘
, then the equation becomes,
tan2(30)^{{\circ}}=\frac{2tan30^{{\circ}}}{1-tan^{2}30^{{\circ}}}tan2(30)
∘
=
1−tan
2
30
∘
2tan30
∘
tan60^{{\circ}}=\frac{2{\times}\frac{1}{\sqrt{3}}}{1-\frac{1}{3}}tan60
∘
=
1−
3
1
2×
3
1
\sqrt{3}=\frac{\frac{2}{\sqrt{3}}}{\frac{2}{3}}
3
=
3
2
3
2
\sqrt{3}=\sqrt{3}
3
=
3
Hence proved.
Similar questions