If θ = 30°, verify tha:t
(i) sin 2 θ = 2 sin θ cos θ
(ii) cos 2 θ = 2 cos² θ - 1
Answers
Answered by
0
(i) sin2θ= 2sinθcosθ
sin2(30°)= 2sin30°cos30°
sin60°=2sin30°cos30°
√3/2=2×1/2×√3/2
√3/2=√3/2
L.H.S.=R.H.S
Hence verified
(ii) cos 2 θ = 2 cos² θ - 1
cos 2(30°) = 2 cos² 30° - 1
cos 60° = 2 cos² 30° - 1
1/2= 2×(√3/2)²-1
1/2= 2×3/4-1
1/2=3/2-1
1/2=1/2
L.H.S.=R.H.S
Hence verified
Answered by
0
Answer:
i)(√3)/2=(√3)/2
ii) 1/2=1/2
Step-by-step explanation:
i)θ = 30°
sin2(30°)=2(sin(30°))(cos(30°))
sin60°=2×sin30°×cos30°
(√3)/2=2×1/2×√3/2
(√3)/2=(√3)/2
hence verified
ii) cos2(30°)=2cos^(2)30°-1
cos60°=2(1+cos2(30°))/2-1
1/2=2(1+1/2)/2-1
1/2=1+1/2-1
1/2=1/2
hence verified
Similar questions