Math, asked by BrainlyHelper, 1 year ago

If θ = 30°, verify that
(i)tan 2\Theta=\frac{2tan\Theta}{1-tan^{2}\Theta }
(ii)sin 2\Theta=\frac{2tan\Theta}{1+tan^{2}\Theta }
(iii)cos2\Theta=\frac{1-tan^{2}\Theta }{1+tan^{2}\Theta }
(iv)cos 3θ = 4 cos³ θ − 3 cos θ

Answers

Answered by nikitasingh79
3

SOLUTION :

Given : θ = 30°

verify (i) tan 2θ = 2tanθ / 1 - tan²θ

L.H.S  = tan 2θ  

On Substituting  θ = 30° in LHS

= tan 2 × 30°  

= tan 60°  

= tan 60° = √3

L.H.S = √3

RHS = 2tanθ / 1 - tan²θ

On Substituting  θ = 30° in RHS

2 tan 30° / 1 - (tan 30°)²

= 2× 1/√3 / 1 - (1/√3)²

= 2/√3 / 1 - 1/3

= (2/√3) / (3 - 1)/3

[ By taking L.C.M ]

=  (2/√3) /( ⅔)

= 2/√3 × 3/2

= 3/√3

= 3×√3 / √3×√3

[By rationalising the denominator]

= 3√3 /3

R.H.S = √3  

L.H.S = R.H.S

Hence, tan 2θ = 2tanθ / 1 - tan²θ

(ii) Given : θ = 30°,

verify :  sin 2θ = 2 tanθ/1− tan²θ

L.H.S = sin 2θ

On Substituting  θ = 30° in LHS

= sin 2× 30°  

sin 2θ = sin 60° = √3/2

L.H.S = √3/2

R.H.S = 2 tanθ/1 + tan²θ

= 2 tan 30° /1+ tan² 30°

On Substituting  θ = 30° in RHS

= 2 × 1/√3 /  1+ (1/√3)²

= 2× 1/√3 / 1 + (1/√3)²

= 2/√3 / 1 + 1/3

= (2/√3) / (3 + 1)/3

[ By taking L.C.M ]

=  (2/√3) /(4/3)

= 2/√3 × (¾)

= 3/2√3

= 3×√3 / 2√3×√3

[By rationalising the denominator]

= 3√3 /2×3

R.H.S = √3 /2

L.H.S = R.H.S

Hence, sin 2θ = 2 tanθ / 1 + tan²θ

(iii) Given : θ = 30°,

verify :  cos 2θ = 1- tan² θ/1+ tan²θ

L.H.S = cos 2θ

On Substituting  θ = 30° in LHS

= cos 2× 30°  

cos 2θ = cos 60° = 1/2

L.H.S = 1/2

R.H.S = 1- tan² θ/1+ tan²θ

On Substituting  θ = 30° in RHS

= 1 - tan² 30° / 1+ tan² 30°

= 1 - (1/√3)² / 1 + (1/√3)²

= 1 - ⅓ / 1 + ⅓  

= (3-1)/3 / (3+1)/3

[By taking L.C.M]

= ⅔ / 4/3  

= ⅔ × ¾  

= ½  

L.H.S = R.H.S  

Hence, cos 2θ =1- tan²θ/1+tan²θ

(iv) Given : θ = 30°,

verify: cos 3θ = 4 cos³θ - 3cosθ

LHS = cos 3θ

On Substituting  θ = 30° in LHS

= cos 3 (30°)  

= cos 90°

= 0

[cos 90° = 0]

LHS = 0

RHS = 4 cos³θ −3 cosθ

On Substituting  θ = 30° in RHS

= 4cos³ 30° −3cos 30°

= 4(√3/2)³ −3× √3/2

= 4 × 3√3/8 - 3√3/2

= 3√3/2 − 3√3/2

= 0

RHS = 0

LHS = RHS.

Hence, cos 3θ = 4 cos³θ - 3 cosθ

HOPE THIS ANSWER WILL HELP YOU…

Answered by nethranithu
1

hey there➡️



here ur answer which i wrote and attached for u❗



hope this helps u✅✔️✅✔️



be brainly❤️

Attachments:
Similar questions