if 3a + 2b = 23 and ab = 20 , find 9a^2 + 4b^ 2 (using identities)
Answers
Answered by
6
Given :- 3a + 2b = 23 and ab = 20
To find :- 9a^2 + 4b^2
Solution :- Using identity , (A+B)^2 = A^2 + B^2 + 2AB
3a + 2b = 23 (given)
Squaring on both sides,
==> (3a + 2b)^2 = 23^2
==> 9a^2 + 4b^2 + 2 * 3a * 2b = 529
==> 9a^2 + 4b^2 + 12ab = 529
==> 9a^2 + 4b^2 = 529 - 12ab
==> 9a^2 + 4b^2 = 529 - 12 x 20 (given, ab = 20)
==> 9a^2 + 4b^2 = 529 - 240
Therefore, the value of the expression 9a^2 + 4b^2 = 289
Similar questions