If 3a+2b+2c=14 find the maximum value of a^3b^2c^2
Answers
Answered by
0
AM >= GM
(3a+2b+2c)/7 >= (a^3b^2c^2)^(1/7)
14/7 >= (a^3b^2c^2)^(1/7)
(a^3b^2c^2)^(1/7) <= 2
a^3b^2c^2 <= 2^7
a^3b^2c^2 <= 128
Hence maximum value of a^3b^2c^2 is 128.
(3a+2b+2c)/7 >= (a^3b^2c^2)^(1/7)
14/7 >= (a^3b^2c^2)^(1/7)
(a^3b^2c^2)^(1/7) <= 2
a^3b^2c^2 <= 2^7
a^3b^2c^2 <= 128
Hence maximum value of a^3b^2c^2 is 128.
Similar questions
Social Sciences,
8 months ago
Math,
8 months ago