Math, asked by anushka7741, 11 months ago

If 3a + 4b= 9 ,ab = 2 ,find the value of 27a^3 +64b^3​

Answers

Answered by abhi569
20

Answer:

Required numeric value of 27a^3 + 64b^3 is 81.

Step-by-step explanation:

Given, 3a + 4b = 9

Cube on both sides of the equation given above :

= > ( 3a + 4b )^3 = 9^3

From the properties of expansions : -

  • ( a + b )^3 = a^3 + b^3 + 3ab( a + b )

Thus,

= > ( 3a )^3 + ( 4b )^3 + 3( 3a x 4b )( 3a + 4b ) = 9^3

= > 27a^3 + 64b^3 + 3( 12 x ab )( 9 ) = 729             { from above, 3a + 4b = 9 }

= > 27a^3 + 64b^3 + 3( 12 x 2 )( 9 ) = 729             { given, ab = 2 }

= > 27a^3 + 64b^3 + 3( 24 )( 9 ) = 729

= > 27a^3 + 64b^3 + 648 = 729

= > 27a^3 + 64b^3 = 729 - 648

= > 27a^3 + 64b^3 = 81

Hence the required numeric value of 27a^3 + 64b^3 is 81.

Answered by LovelyG
27

Answer:

81

Step-by-step explanation:

3a + 4b = 9

Cubing both the sides;

( 3a + 4b )³ = 9³

⇒ (3a)³ + (4b)³ + 3 * 3a *4b [ 3a + 4b ] = 729

⇒ 27a³ + 64b³ + 3* 12 * 2 (9) = 729

        [ ∵ ab = 2 and 3a + 4b = 9]

⇒ 27a³ + 64b³ + 648 = 729

⇒ 27a³ + 64b³ = 729 - 648

⇒ 27a³ + 64b³ = 81

Hence, the answer is 81.

_______________________

Identity used :

(a + b)³ = a³ + b³ + 3ab (a + b)

Similar questions