If 3a+5b+4c=0 then show that : 27a^3+125a^3+64c^3=180 abc
Answers
Answered by
3
Heya ✋
Let see your answer !!!!!
Given that
3a + 5b + 4c = 0
We have to prove that
27a^3 + 125a^3 + 64c^3 = 180abc
Solution
3a + 5b + 4c = 0
=> 3a + 5b = -4c
Cubing both sides
=> (3a + 5b)^3 = (-4c)^3 ----------- (i)
=> (3a)^3 + (5b)^3 + 3 × 3a × 5b(3a + 5b) = -64c^3
=> 27a^3 + 125b^3 + 45ab(3a + 5b) = -64c^3
=> 27a^3 + 125b^3 + 45ab(-4c) = -64c^3
=> 27a^3 + 125b^3 - 180abc = -64c^3
=> 27a^3 + 125b^3 + 64c^3 = 180abc
Proved
Thanks :)))))
Let see your answer !!!!!
Given that
3a + 5b + 4c = 0
We have to prove that
27a^3 + 125a^3 + 64c^3 = 180abc
Solution
3a + 5b + 4c = 0
=> 3a + 5b = -4c
Cubing both sides
=> (3a + 5b)^3 = (-4c)^3 ----------- (i)
=> (3a)^3 + (5b)^3 + 3 × 3a × 5b(3a + 5b) = -64c^3
=> 27a^3 + 125b^3 + 45ab(3a + 5b) = -64c^3
=> 27a^3 + 125b^3 + 45ab(-4c) = -64c^3
=> 27a^3 + 125b^3 - 180abc = -64c^3
=> 27a^3 + 125b^3 + 64c^3 = 180abc
Proved
Thanks :)))))
Answered by
0
Step-by-step explanation:
hope this will help you
Attachments:
Similar questions