If 3a + 5b + 7c = 1.25 k and 2a + b + 3c = 0.75 k,then 7b + 5c is what percentage of k?
Answers
Given,
3a + 5b + 7c = 5/4 k ----I
2a + b + 3c = 3/4 k ------II
Removing a coefficeint by multiplying by 2 to I and 3 to II
10b + 14c = 5/2 k -----III
3b+ 9c= 9/4k -----IV
Subtract IV from III we get 7b+5c=1/4 k
Or, (7b+5c) is 25% of k, is the answer.
Answer:
⇒ 7b + 5c is 25% of k
Step-by-step explanation:
Given data
3a + 5b + 7c = 1.25 k _ (1)
2a + b + 3c = 0.75 k _ (2)
here we need to find 7b + 5c and percentage of 7b + 5c in k
(1) × 2 ⇒ 2 ( 3a + 5b + 7c) = 2 (1.25 k )
6a + 10b + 14c = 2.5 k _ (3)
(2) × 3 ⇒ 3 ( 2a + b + 3c ) = 3 (0.75 k )
6a + 3b + 9c = 2.25 k _ (4)
subtract (4) - (3)
⇒ 6a + 10b + 14c - (6a + 3b + 9c) = 2.5 k - 2.25 k
⇒ 6a + 10b + 14c - 6a - 3b - 9c = 0.25 k
⇒ 7b + 5c = 0.25 k
⇒ 7b + 5c = (k) [ 0.25 = 25/100 ]
⇒ 7b + 5c is 25% of k