Math, asked by fahmidaislam4407, 4 months ago

if 3bx^2-4ax+3b=0,than prove x=√2a+3b+√2a+3b/√2a+3b-√2a-3b

Answers

Answered by Anonymous
4

Answer:

\huge\colorbox{yellow}{Correct\:Question\:-}

 If \:  \:  x =  \frac{ \sqrt{2a + 3b} +  \sqrt{2a + 3b}  }{ \sqrt{2a + 3b} -  \sqrt{2a - 3b}  }

Then\: \: prove \: \:that \:  {3bx}^{2} - 4ax + 3b = 0

\huge\colorbox{yellow}{Solution\:-}

 \frac{x}{1} =  \frac{ \sqrt{2a + 3b} +  \sqrt{2a - 3b}  }{ \sqrt{2a + 3b} -  \sqrt{2a - 3b}  }

 \frac{x + 1}{x - 1}  =  \frac{2 \sqrt{2a + 3b} }{2 \sqrt{2a - 3b} }

 \frac{ {(x + 1)}^{2} }{ {(x - 1)}^{2} }  =  \frac{2a + 3b}{2a - 3b}

 \frac{ {x}^{2} + 2x + 1 }{ {x}^{2} - 2x + 1 }  =  \frac{2a + 3b}{2a - 3b}

 { - 3bx}^{2} - 3b + 4ax =  - 4ax +  {3bx}^{2} + 3b

 {6bx}^{2} - 8ax + 6b = 0

3( {3bx}^{2} - 4ax + 3b) = 0

 =  >  {3bx}^{2} - 4ax + 3b = 0

\boxed{\pink{ =  >  {3bx}^{2} - 4ax + 3b = 0}}

\huge\colorbox{yellow}{Thank\:You}

Similar questions