if 3cos alpha - 4sin alpha =5 then prove that 3cos alpha + 4cos alpha = 0
Answers
Answered by
7
We have,
3sinθ+4cosθ=5 ………. (1)
On squaring both sides, we get
(3sinθ+4cosθ) ^2=5 ^2
9sin ^2θ+16cos ^2θ+24sinθcosθ=25
9(1−cos ^2θ)+16(1−sin^2θ)+12×2sinθcosθ=25
9−9cos ^2θ+16−16sin^2θ+12×2sinθcosθ=25
25−9cos^2θ−16sin^2θ+12×2sinθcosθ=25
9cos^2θ+16sin^2θ−12×2sinθcosθ=0
(3cosθ−4sinθ)^2=0
3cosθ−4sinθ=0
Hence, the value is 0.
Answered by
21
Answer:
Hiiiiiiiii DEAR......xD..✌️✌️
We have,
3sinθ+4cosθ=5 ………. (1)
On squaring both sides, we get
(3sinθ+4cosθ) ^2=5 ^2
9sin ^2θ+16cos ^2θ+24sinθcosθ=25
9(1−cos ^2θ)+16(1−sin^2θ)+12×2sinθcosθ=25
9−9cos ^2θ+16−16sin^2θ+12×2sinθcosθ=25
25−9cos^2θ−16sin^2θ+12×2sinθcosθ=25
9cos^2θ+16sin^2θ−12×2sinθcosθ=0
(3cosθ−4sinθ)^2=0
3cosθ−4sinθ=0
Hence, the value is 0.
Plz Plz Plz Mark me as BRAINLIEST DEAR......
@ Isha.......
Similar questions