Math, asked by swarnadeepdutta011, 2 months ago

if 3cos theta = 5sin theta , find (tan^2 theta + 1)/(sin^2 theta + cos^2 theta)​

Answers

Answered by Anonymous
69

Given:-

  • 3cos \theta = 5sin \theta

To Find:-

  •  \frac{(tan^2 \theta + 1)}{(sin^2 \theta + cos^2 \theta)}

SOLUTION:-

3cos \theta = 5sin \theta

 =  > cos \theta =  \frac{5}{3}  \times sin \theta

Now, Squaring Both sides

 =  >  { \cos }^{2} \theta =  { (\frac{5}{3} )}^{2}  \times  { \sin}^{2} \theta

We Know that

 \: \bf\underline \red{\underline{{ \cos }^{2} \theta =  1 - { \sin}^{2} \theta}}

So,

  =  >   1 - {{ \sin}^{2} \theta} = { (\frac{5}{3} )}^{2}  \times  { \sin}^{2} \theta

  =  >   1 - {{ \sin}^{2} \theta} =  \frac{25}{9}   \times  { \sin}^{2} \theta

 =  > 1 =  \frac{25}{9}  { \sin }^{2}\theta  +   { \sin }^{2}\theta

 =  > 1 =  \frac{25}{9}  { \sin }^{2}\theta  +    \frac{9}{9} { \sin }^{2}\theta

 =  > 1 =  \frac{34}{9} { \sin }^{2}\theta

 =  >  { \sin }^{2} \theta =  \frac{9}{34}

 \therefore  \sin\theta =  \frac{3}{ \sqrt{34} }

 { \cos }^{2} \theta = 1 -  { \sin}^{2} \theta

 { \cos }^{2} \theta = 1 -   \frac{ {3}^{2} }{ { \sqrt{34} }^{2} }

 =  > { \cos }^{2} \theta = 1 -  \frac{9}{34}  =  \frac{34 - 9}{34}

 =  > { \cos }^{2} \theta =  \frac{25}{34}

 =  > \therefore{ \cos }\theta =  \frac{5}{ \sqrt{34} }

Now,

 \frac{(tan^2 \theta + 1)}{(sin^2 \theta + cos^2 \theta)}

 =  > \frac{( \frac{ {\sin   }^{2}\theta  }{ { \cos }^{2} \theta}) + 1}{( \frac{3}{ \sqrt{34} } +  \frac{5}{ \sqrt{34} } )}

 =  >  \frac{ \frac{ \frac{3}{ \sqrt{34} } }{ \frac{5}{ \sqrt{34} } }  + 1}{ \frac{8}{ \sqrt{34} } }

 =  >  \frac{ \frac{3}{5}  + 1}{ \frac{8}{ \sqrt{34} } }

 =  >  \frac{ \frac{8}{5} }{ \frac{8}{ \sqrt{34} } }

 =  >  \frac{ \sqrt{34} }{5}

Similar questions