If 3cos2θ + 7sin2θ=4 so that cotθ=√3.
Answers
Answer:
Step-by-step explanation:
3cos²θ + 7sin²θ=4
To Prove- cotθ = √3
Proof-
We are given that -
3cos²θ + 7sin²θ=4
So,
sin²θ = 1 - cos²θ
Putting the value -
3cos²θ + 7sin²θ=4
3cos²θ + 7(1 - cos²θ) = 4
3cos²θ + 7 - 7cos²θ = 4
-4cos²θ = -3
cos²θ = 3/4
1 - sin²θ = 3/4
-sin²θ = -1/4
sin²θ = 1/4
cot²θ = cos²θ/sin²θ
cot²θ = 1/4/3/4
cot²θ = 3
Taking root on both sides,
cotθ = √3
Hence proved... Pls mark as brainliest
Answer:
Answer:
Step-by-step explanation:
3cos²θ + 7sin²θ=4
To Prove- cotθ = √3
Proof-
We are given that -
3cos²θ + 7sin²θ=4
So,
sin²θ = 1 - cos²θ
Putting the value -
3cos²θ + 7sin²θ=4
3cos²θ + 7(1 - cos²θ) = 4
3cos²θ + 7 - 7cos²θ = 4
-4cos²θ = -3
cos²θ = 3/4
1 - sin²θ = 3/4
-sin²θ = -1/4
sin²θ = 1/4
cot²θ = cos²θ/sin²θ
cot²θ = 1/4/3/4
cot²θ = 3
Taking root on both sides,
cotθ = √3
Hence proved... Pls mark as brainliest