If 3cos² A + 7sin² A = 4, show that cotA= √3
please reply within 3:00pm
Answers
Answered by
9
Step-by-step explanation:
Given:-
3cos² A + 7sin² A = 4
To Show:-
cotA= √3
Using formula:-
Sin² A+ Cos ² A=1
=>Cos² A=1- Sin² A
=>Sin² A=1- Cos² A
Sin30°=1/2
Cot 30°=√3
Solution:-
Given that 3 cos² A+7 sin² A=4
we know that sin²A+cos² A=1
=>3(1-sin² A)+7sin²A=4
=>3-3 Sin² A+7 Sin² A=4
=>3+4 sin² A=4
=>4 Sin² A=4-3
=>4 Sin² A=1
=>Sin² A=1/4
=>Sin A=√(1/4)
=>Sin A=1/2
=>Sin A= Sin 30°
=>A=30°
Now ,
LHS:
Cot A
=>Cot 30°
=>√3
=RHS
LHS=RHS
Answer:-
CotA=√3
Hence,proved.
Similar questions