Math, asked by libijeemon, 11 months ago

if 3cosA-4SinA=0; evaluate sinA+2cosA/3cosA-sinA​

Answers

Answered by jude0704
10

Answer:

Step-by-step explanation:

3cosA-4sinA=0

3cosA=4sinA

cosA=4sinA/3

by multiplying with conjugate

[(sinA+2cosA)(3cosA+sinA)]/[9cos²A-sin²A]

=> [3sinAcosA+sin²A+6cos²A+2sinAcosA]/[9cos²A-sin²A]

=>[sinA(4sinA)+sin²A+2(4sinA)²+2sinAcosA]/[3(4sin²A-sin²A)]

=>[4sin²A+sin²A+32sin²A+2sinAcosA]/[3sin²A]

=>[37sin²A+2sinAcosA]/3sin²A

=>37sin²A+2sinA(4sinA/3)/3sin²A

=>[(117sin²A+8sin²A)/3]/3sin²A

=>[125sin²A]/9sin²A = 125/9

the answer is 125/9

hope this is helpful to you

if you want more problems to be solve follow me or put your questions on the comments

Answered by bobbyvishnunaiow5hb0
4

Answer:

3cosA-4sinA=0. 3cosA=4SinA. 3/4=sinAcosA..tanA=3/4...

sinA+2cosA/3cosA.sinA=sinA+2cosA/3sinA...

Step-by-step explanation:

sonA/3sinA +2cosA/3sinA=1/3+2/3cotA....=1/3+2/3×1/tanA=1/3+(2/3×4/3)=1/3+8/9=33/27=11/9.

Similar questions