Math, asked by sourav72, 1 year ago

If 3cosa-4sina=5 then what is the value of 4cosa+3sina

Answers

Answered by karetiya
16
see above pic for answer
Attachments:
Answered by jitumahi435
1

Given:

3\cos A - 4\sin A = 5                    ............... (1)

Let 4\cos A + 3\sin A = x              ............... (2)

We have to find, the value of 4\cos A + 3\sin A = ?

Solution:

Squaring and adding equations (1) and (2), we get

(3\cos A - 4\sin A)^2 + (4\cos A + 3\sin A)^2 = 5^2 + x^{2}    

⇒ 25 + x^{2} = (3\cos A)^2 + (4\sin A)^2 + 2(3\cos A)(4\sin A)+ (4\cos A)^2 + (3\sin A)^2-2(3\cos A)(4\sin A)

⇒ 25 + x^{2} = 9\cos^2 A +16\sin^2 A + 16\cos^2+ 9\sin^2 A  

⇒ 25 + x^{2} = 9(\cos^2 A+\sin^2 A) +16(\cos^2 A+\sin^2 A)

Using the trigonometric identity:

\cos^2 A + \sin^2 A = 1

25 + x^{2} = 9(1) + 16(1)

⇒ 25 + x^{2} = 9 + 16

x^{2} = 25 - 25

x^{2} = 0

⇒ x = 0

∴ 4\cos A + 3\sin A = 0

Thus, if 3\cos A - 4\sin A = 5, then the value of "4\cos A + 3\sin A = 0".

Similar questions