Math, asked by anilkanaka720, 2 months ago

if 3cosA=5 then find the value of sinA​

Answers

Answered by sudhanshudhek76
1

\huge{\colorbox{cyan}{\underline{\underline{\bf{\pink{☆• answer \: •☆}}}}}}

3cos \: a = 5 \\ cos \: a =  \frac{5}{3}  \\  \\ using \:  \: pythagoras \: theorem  \:  \\  {h}^{2}  =  {p}^{2}  +  {b}^{2} \\  {3}^{2}   =  {p}^{2}  +  {5}^{2}  \\ 9 =  {p}^{2}  + 25 \\  {p}^{2}  =  - 9 + 25 \\  {p}^{2}  = 16 \\ p = 4cm \\  \\  \sin(a)  = \frac{p}{h} = \frac{4}{3}

Answered by sehgalp381
29

hello dear,

Answer: -

3 \cos(a)  = 5 \\  \cos(a)  =  \frac{5}{3}  \\ ( \cos(a)  =  \frac{b}{h} )

p {}^{2}  = b {}^{2}  - h {}^{2}  \\ p {}^{2}  = (5) {}^{2}  - (3) {}^{2}  \\ p {}^{2}  = 25 - 9 = 16 \\ p {}^{2}  = 16 \\ p =  \sqrt{16} = 4

Thae valve of Sin A: -

( \sin(a)  =  \frac{p}{h} ) \\ p = 4  \: and \: h = 3 \\  \frac{p}{h}  =  \frac{4}{3}

please thanks my answer❤❤❤❤

Similar questions