Math, asked by puja9713, 10 months ago

if 3cos@-4sin@=5 ...then prove that 3sin@+4cos@=0​

Answers

Answered by Anonymous
3

Heya mate,

Go foreward for ur ans,

Given

3cosα + 4sinα = 5

4sinα = 5 - 3cosα

Square (1), yields

16sin²θ=25−30cosθ+9cos²θ.

Use identity sin2θ=1−cos2θ and substitute to (2)

16(1−cos²θ) =25−30cosθ+9cos²θ

25cos²θ−30cosθ+9 =0

(5cosθ−3)²=0

Therefore

cos \alpha  =  \frac{3}{5}

Isse sin theta aa jaayega 4/5

To find

3sinθ - 4 cosθ

3 \times  \frac{4}{5}  - 4 \times  \frac{3}{5} \\  \\  \frac{12}{5}  -  \frac{12}{5}

0

___________________

ʜ ʜɪs ʜʟ

ʀ s ʙʀɪɴʟɪs

Read more here

If 3sin (theta) +4 cos (theta) =5 then find the value of 4 sin (theta) - 3 cos theta, also find sin theta and cos theta

f 3sin (theta) +4 cos (theta) =5 then find the value of 4 sin (theta) - 3 cos theta, also find sin theta and cos theta https://brainly.in/question/5450852?utm_source=android&utm_medium=share&utm_campaign=question

Answered by mithrahamsika
0

Answer:

3 sin teta + 4 cos teta = 5

squaring on both sides

Similar questions