Math, asked by harshithjain9780, 5 months ago

If 3cotθ=1, then find the value of

(3cosθ-4sinθ)/(5sinθ+4cosθ).​

Answers

Answered by anindyaadhikari13
3

Required Answer:-

Given:

  • 3cot(x) = 1

To find:

  • Value of (3cos(x) - 4sin(x))/(5sin(x) + 4cos(x))

Solution:

Given that,

 \rm 3 \cot(x)  = 1

 \rm \implies \cot(x)  =  \dfrac{1}{3}

Now,

 \rm \dfrac{3 \cos(x)  - 4 \sin(x) }{5 \sin(x) + 4 \cos(x)  }

Dividing the numerator and denominator by sin(x), we get,

 \rm =  \dfrac{ \dfrac{1}{ \sin(x) }  \bigg \{ 3 \cos(x)  - 4 \sin(x)   \bigg\}}{ \dfrac{1}{ \sin(x) } \bigg \{5 \sin(x) + 4 \cos(x)  \bigg\}  }

 \rm  = \dfrac{  \bigg \{ 3  \dfrac{ \cos(x) }{ \sin(x) }   - 4 \dfrac{\sin(x) }{ \sin(x) }  \bigg\}}{ \bigg \{5  \dfrac{\sin(x) }{ \sin(x) }+ 4  \dfrac{\cos(x)}{ \sin(x) }  \bigg\}  }

 \rm =  \dfrac{  3 \cot(x)    - 4  }{5  + 4 \cot(x)  }

 \rm =  \dfrac{1  - 4  }{5  + 4 \times  \dfrac{1}{3}   }

 \rm =  \dfrac{ - 3  }{5  + \dfrac{4}{3}   }

 \rm =  \dfrac{ - 3  }{ \dfrac{15 + 4}{3}   }

 \rm =  \dfrac{ - 3  }{ \dfrac{19}{3}   }

 \rm =  \dfrac{ -3 \times 3}{19}

 \rm =  \dfrac{ -9}{19}

Hence,

 \rm \mapsto \dfrac{3 \cos(x)  - 4 \sin(x) }{5 \sin(x) + 4 \cos(x)  }  =  \dfrac{ - 9}{19}

Note:

  • sin(x)/cos(x) = tan(x)
  • cos(x)/sin(x) = 1/tan(x) = cot(x)
Answered by Anisha5119
4

HEYA mate here's the answer Mark as brainliest pleaseeeeee follow up

Attachments:
Similar questions