Math, asked by ajay123469, 11 months ago

if 3cot theta= 4 find the value of 4 cos theta-sin theta /2 cos theta + sin theta​

Answers

Answered by ankit1009
0

Answer:

13/5

Step-by-step explanation:

3cot theta= 3 cos theta/sin theta that is equal to 4

so cos theta equals to 4/3 din theta

After putting the value of cos theta in 4 cos theta-sin theta /2 cos theta-sin theta u will get 13/5

Answered by Anonymous
14

Solution

Given that 3cot∅ = 4

 \implies \:  \boxed{ \sf{cot \theta =  \frac{4}{3} }}

We have,

 \sf{ \frac{4cos \theta - sin \theta}{2cos \theta + sin \theta}} \\

Dividing both numerator and denominator by sin∅,we get:

 =  \sf{ \frac{4cot \theta - 1}{2cot \theta + 1} } \\   \\  =  \sf{ \frac{4 \times  \frac{4}{3} - 1 }{2 \times  \frac{4}{3} + 1 } } \\  \\  =  \frac{ \frac{16}{3} - 1 }{ \frac{8}{3} + 1 }  \\  \\  =  \frac{16 - 3}{8 + 3}  \\  \\  =  \frac{13}{11}

Basic Trigonometric Relationships:

  • sin∅ = 1/cosec∅

  • cos∅ = 1/sec∅

  • tan∅ = 1/cot∅ = sin∅/cos∅

  • sin²∅ + cos²∅ = 1

  • cosec²∅ - cot²∅ = 1

  • sec²∅ - tan²∅ = 1
Similar questions