Math, asked by kamogh10, 1 year ago

If 3cotA=4,then check whether 1-tan²A/1+tan²A=cos²A-sin²A

Answers

Answered by anu1191
51
hope this helps you............
Attachments:
Answered by isafsafiya
7

LHS = RHS

Step-by-step explanation:

Given

3 \cot(a)  = 4 \\  \\ and \: prove \\  \\   \frac{1  -   { \tan }^{2}a }{1   +    { \tan }^{2}a}  =  { \cos }^{2} a -  { \sin }^{2} a

now,

Draw a right angle triangle ΔABC

  • right angle at A
  • as shown in the adjoining figure in above pic

as we know given

 \cot(a)  =  \frac{4}{3}  \\  \\

let AB =4k

AC = 3k

where K is some positive real number..

now by usinh Pythagoras theorem

BC² =AB² +AC²

put the value we get

BC² = (4K)² +(3K)²

= 16 K² +9 K²

= 25K²

taking squre root out we get..

BC = 5k

Now

 \tan(a)  =  \frac{ac}{ab}  \\  \\  \:  \  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:   =  \frac{3k}{4k}   =  \frac{3}{4} \\  \\  \sin(a)  =  \frac{ac}{bc}  \\   \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    =  \frac{3k}{5k}  =  \frac{3}{5}  \\  \\  \cos(a)  =  \frac{ab}{bc}  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \frac{4k}{5k}  =  \frac{4}{5}

now as we have

\frac{1  -  { \tan }^{2}a }{1   +    { \tan }^{2}a}  =  { \cos }^{2} a -  { \sin }^{2} a \\  \\

take L.H.S AND R.H.S

LHS =

\frac{1  -   { \tan }^{2}a }{1   +    { \tan }^{2}a}   \\  \\ put \: all \: the \: values \: we \: get \\  \\   \frac{1 - ( \ { \frac{3}{4} }^{2} ) }{1 + ( \frac{ {3}^{2} }{4} )}  \\  \\  \frac{1 -  \frac{9}{16} }{1 +  \frac{9}{16} }  \\  \\  \frac{ \frac{16 - 9}{16} }{ \frac{16 + 9}{16} }  \\  \\  \\  \frac{7}{16}  \times  \frac{16}{25}  \:  \:  \\ reciprocl \: the \: fraction \\  \\  \\

L.HS =

 \frac{7}{25}  \\  \\

now take RHS

 { \ \cos(a) }^{2}  -  { \sin(a) }^{2}  \\  \\ put \: the \: value \: we \: get \\  \\  {1}^{2}  - ( { \frac{3}{5} }^{2} ) \\  \\ 1  -  \frac{9}{25}  \\  \\  \frac{25 - 9}{25}  \\  \\  \frac{7}{25}  \\  \\

there for

we get LHS = RHS

 \frac{7}{25}  =  \frac{7}{25 }  \\  \\  \\

Attachments:
Similar questions