Math, asked by bimalarai287, 6 hours ago

if 3cotA =4,then find the value of 3cosA+2sinA
__________
3cosA-2sinA​

Answers

Answered by varadad25
109

Answer:

\displaystyle{\boxed{\red{\sf\:\dfrac{3\:\cos\:A\:+\:2\:\sin\:A}{3\:\cos\:A\:-\:2\:\sin\:A}\:=\:3\:}}}

Step-by-step-explanation:

We have given that,

\displaystyle{\sf\:3\:\cot\:A\:=\:4}

We have to find the value of

\displaystyle{\sf\:\dfrac{3\:\cos\:A\:+\:2\:\sin\:A}{3\:\cos\:A\:-\:2\:\sin\:A}}

Now,

\displaystyle{\sf\:3\:\cot\:A\:=\:4}

\displaystyle{\implies\boxed{\sf\:\cot\:A\:=\:\dfrac{4}{3}}}

Consider a right triangle ABC right angled at angle B.

We know that,

\displaystyle{\pink{\sf\:\cot\:A\:=\:\dfrac{Adjacent\:side}{Opposite\:side}}}

\displaystyle{\implies\sf\:\dfrac{4}{3}\:=\:\dfrac{AB}{BC}}

\displaystyle{\implies\sf\:AB\:=\:4x}

\displaystyle{\sf\:BC\:=\:3x}

Now, by Pythagoras theorem,

\displaystyle{\pink{\sf\:(\:AC\:)^2\:=\:(\:AB\:)^2\:+\:(\:BC\:)^2}}

\displaystyle{\implies\sf\:AC^2\:=\:(\:4x\:)^2\:+\:(\:3x\:)^2}

\displaystyle{\implies\sf\:AC^2\:=\:16x^2\:+\:9x^2}

\displaystyle{\implies\sf\:AC^2\:=\:25x^2}

\displaystyle{\implies\sf\:AC\:=\:5x\:}

\displaystyle{\therefore\boxed{\sf\:Hypotenuse\:=\:5x}}

Now, we know that,

\displaystyle{\pink{\sf\:\sin\:A\:=\:\dfrac{Opposite\:side}{Hypotenuse}}}

\displaystyle{\implies\sf\:\sin\:A\:=\:\dfrac{3\:\cancel{x}}{5\:\cancel{x}}}

\displaystyle{\implies\sf\:\sin\:A\:=\:\dfrac{3}{5}}

\displaystyle{\implies\sf\:2\:\sin\:A\:=\:\dfrac{2\:\times\:3}{5}}

\displaystyle{\implies\boxed{\blue{\sf\:2\:\sin\:A\:=\:\dfrac{6}{5}}}}

Now, we know that,

\displaystyle{\pink{\sf\:\cos\:A\:=\:\dfrac{Adjacent\:side}{Hypotenuse}}}

\displaystyle{\implies\sf\:\cos\:A\:=\:\dfrac{4\:\cancel{x}}{5\:\cancel{x}}}

\displaystyle{\implies\sf\:\cos\:A\:=\:\dfrac{4}{5}}

\displaystyle{\implies\sf\:3\:\cos\:A\:=\:\dfrac{3\:\times\:4}{5}}

\displaystyle{\implies\boxed{\green{\sf\:3\:\cos\:A\:=\:\dfrac{12}{5}}}}

Now, we have to find the value of

\displaystyle{\sf\:\dfrac{3\:\cos\:A\:+\:2\:\sin\:A}{3\:\cos\:A\:-\:2\:\sin\:A}}

\displaystyle{\implies\sf\:\dfrac{\dfrac{12}{5}\:+\:\dfrac{6}{5}}{\dfrac{12}{5}\:-\:\dfrac{6}{5}}}

\displaystyle{\implies\sf\:\dfrac{\dfrac{12\:+\:6}{5}}{\dfrac{12\:-\:6}{5}}}

\displaystyle{\implies\sf\:\dfrac{\dfrac{18}{5}}{\dfrac{6}{5}}}

\displaystyle{\implies\sf\:\dfrac{18}{\cancel{5}}\:\times\:\dfrac{\cancel{5}}{6}}

\displaystyle{\implies\sf\:\cancel{\dfrac{18}{6}}}

\displaystyle{\implies\sf\:3}

\displaystyle{\therefore\:\underline{\boxed{\red{\sf\:\dfrac{3\:\cos\:A\:+\:2\:\sin\:A}{3\:\cos\:A\:-\:2\:\sin\:A}\:=\:3\:}}}}

Attachments:

amansharma264: Good
varadad25: Thank you!
Answered by tname3345
62

Answer:

Step-by-step explanation:

Please the attached file

The answer is 3

Attachments:
Similar questions