Math, asked by mirza735, 1 year ago

If 3cotA = 4, then the value of cos square A - sin square A is
Please answer in a little bit detail ​

Answers

Answered by rajeswari135
20

Step-by-step explanation:

3cotA=4

so cotA = 4/3

tanA= 3/4

A= 37°

Now

cos^2(A) - sin^2(A) = cos^2(37°) - sin^2(37°)= 0.275

Answered by smithasijotsl
2

Answer:

cos²A - sin²A =\frac{7}{25}

Step-by-step explanation:

Given,

3cotA = 4

To find,

cos²A - sin²A

Recall the formula

cot A = \frac{adjacent \ side }{opposite \ side}

sin A = \frac{opposite \ side }{hypotenuse}

cos A = \frac{adjacent \ side }{hypotenuse}

Solution

Since 3 cot A = 4, cot A = \frac{4}{3}

cot A = \frac{adjacent \ side }{opposite \ side}  = \frac{4}{3}

adjacent side = 4 and opposite side = 3

hypotenuse = \sqrt{4^2+3^2} = 5

cos A = \frac{adjacent \ side }{hypotenuse} = \frac{4}{5}

sin A = \frac{opposite \ side }{hypotenuse} = \frac{3}{5}

cos²A - sin²A = ( \frac{4}{5})² - ( \frac{3}{5}

= \frac{16}{25} -  \frac{9}{25}

=\frac{7}{25}

cos²A - sin²A =\frac{7}{25}

#SPJ3

Similar questions