If 3cotA = 4tanA and A is an acute angle then what will be the value of secA?
Answers
Answered by
0
Given:
\mathsf{3\;tanA=cotA}3tanA=cotA
\underline{\textbf{To find:}}
To find:
\textsf{The angle A}The angle A
\underline{\textbf{Solution:}}
Solution:
\mathsf{Consider,}Consider,
\mathsf{3\;tanA=cotA}3tanA=cotA
\implies\mathsf{3\;tanA=\dfrac{1}{tanA}}⟹3tanA=
tanA
1
\implies\mathsf{tan^2A=\dfrac{1}{3}}⟹tan
2
A=
3
1
\implies\mathsf{tanA=\pm\dfrac{1}{\sqrt3}}⟹tanA=±
3
1
\mathsf{Since\;A\;is\;acute,\;tanA\;is\;positive}SinceAisacute,tanAispositive
\implies\mathsf{tanA=\dfrac{1}{\sqrt3}}⟹tanA=
3
1
\implies\boxed{\mathsf{A=30^\circ}}⟹
A=30
∘
Answered by
0
Step-by-step explanation:
sec²A=1+tan²A
so SecA=√7/2
Attachments:
Similar questions
English,
16 hours ago
Math,
16 hours ago
Hindi,
1 day ago
Social Sciences,
8 months ago
Chemistry,
8 months ago