Math, asked by sharmayogesh0408, 7 months ago

If 3k, (4k+2), (6k+3) are three consecutive terms of an A.P , then find the value
of k is (a) 3 (b) 1 (c) - 1 (d) 6 (e) none of these

Answers

Answered by TheProphet
3

S O L U T I O N :

\underline{\bf{Given\::}}

If 3k, (4k +2), (6k+3) are the three consecutive terms of an A.P.

\underline{\bf{Explanation\::}}

We have,

  • a1 = 3k
  • a2 = (4k + 2)
  • a3 = (6k + 3)

A/q

By common difference method :

\longrightarrow\tt{a_2 - a_1 = a_3 - a_2}

\longrightarrow\tt{(4k + 2) -3k = (6k+3) - (4k + 2)}

\longrightarrow\tt{4k + 2 -3k = 6k+3 - 4k -2}

\longrightarrow\tt{k + 2  = 2k+1}

\longrightarrow\tt{k-2k=1-2}

\longrightarrow\tt{\cancel{-}k=\cancel{-}1}

\longrightarrow\bf{k=1}

Thus,

The value of k will be 1 .

Option (b)

Similar questions