Math, asked by 7352478363, 11 months ago

if 3sec^2A+8=10sec^2A,find the values of tanA.

Answers

Answered by abc41444144
1

Answer:

tana= 1/√7

Step-by-step explanation:

I hope this will help you

Attachments:
Answered by mythu67
1

Answer:

\frac{1}{\sqrt{7} }

Step-by-step explanation:

3sec²A + 8 = 10sec²A

⇒ 10sec²A - 3sec²A = 8

⇒ sec²A(10-3) = 8

⇒ 7sec²A = 8

⇒ sec²A = 8/7

⇒ secA = \sqrt{ \frac{8}{7} } = \frac{\sqrt{8} }{\sqrt{7} }

Wkt, secФ = 1/cosФ

Also, tanФ = sinФ/cosФ

∴ tanФ = secФ x sinФ

Now,

\frac{1}{cosA} = \sqrt{ \frac{8}{7} }

cosA = \sqrt{ \frac{7}{8} }

Wkt cosФ = \frac{adjacent}{hypotenuse}

∴ Adjacent = √7

Hypotenuse = √8

By using Pythogoras theorem,

(Hypotenuse)² = (Opposite)² + (Adjacent)²

⇒ (√8)² = (Opposite)² + (√7)²

⇒ (Opposite)² = (√8)² - (√7)²

⇒ (Opposite)² = 8 - 7

⇒ (Opposite)² = 1

∴ Opposite = √1 = 1

Wkt sinФ = \frac{opposite}{hypotenuse}

∴ sinA = \frac{1}{\sqrt{8} }

Now, tanA = sinA x secA

⇒ tanA = \frac{1}{\sqrt{8} } \\ x \frac{\sqrt{8} }{\sqrt{7} }

∴ tanA = \frac{1}{\sqrt{7} }

Hope this helped!

Similar questions