if 3sec^2A+8=10sec^2A,find the values of tanA.
Answers
Answered by
1
Answer:
tana= 1/√7
Step-by-step explanation:
I hope this will help you
Attachments:
Answered by
1
Answer:
Step-by-step explanation:
3sec²A + 8 = 10sec²A
⇒ 10sec²A - 3sec²A = 8
⇒ sec²A(10-3) = 8
⇒ 7sec²A = 8
⇒ sec²A = 8/7
⇒ secA = =
Wkt, secФ = 1/cosФ
Also, tanФ = sinФ/cosФ
∴ tanФ = secФ x sinФ
Now,
⇒
Wkt cosФ =
∴ Adjacent = √7
Hypotenuse = √8
By using Pythogoras theorem,
(Hypotenuse)² = (Opposite)² + (Adjacent)²
⇒ (√8)² = (Opposite)² + (√7)²
⇒ (Opposite)² = (√8)² - (√7)²
⇒ (Opposite)² = 8 - 7
⇒ (Opposite)² = 1
∴ Opposite = √1 = 1
Wkt sinФ =
∴ sinA =
Now, tanA = sinA x secA
⇒ tanA = x
∴ tanA =
Hope this helped!
Similar questions