if 3seca - 5 = 0 then cot a = ___
Answers
Answered by
1
Answer:
Step-by-step explanation:
We are given that 3sec \theta - 5=03secθ−5=0
3sec \theta - 5=0
3sec \theta=5
sec \theta=\frac{5}{3}
We know that sec\theta = \frac{Hypotenuse}{Base}
On comparing
Hypotenuse = 5
Base = 3
To find perpendicular we will use Pythagoras theorem:
Hypotenuse^2=Perpendicular^2+Base^2Hypotenuse
2
=Perpendicular
2
+Base
2
\begin{gathered}5^2=Perpendicular^2+3^2\\5^2-3^2=Perpendicular^2\\\sqrt{5^2-3^2}=Perpendicular\\4=Perpendicular\end{gathered}
5
2
=Perpendicular
2
+3
2
5
2
−3
2
=Perpendicular
2
5
2
−3
2
=Perpendicular
4=Perpendicular
\begin{gathered}Cot\theta = \frac{Base}{Perpendicular}\\Cot\theta = \frac{3}{4}\end{gathered}
Cotθ=
Perpendicular
Base
Cotθ=
4
3
Step-by-step explanation:
I hope it's helpful
Similar questions