If 3sin–1(2x1+x2) −4cos–1(1–x21+x2)+2tan–1(2x1–x2)=π3. Then, x=.
Answers
Answered by
1
Answer:
3sin
−1
[
1+x
2
2x
]−4cos
−1
[
1+x
2
1−x
2
]+2tan
−1
[
1−x
2
2x
]=
3
π
2tan
−1
x=tan
−1
[
1−x
2
2x
]=sin
−1
[
1+x
2
2x
]=cos
−1
[
1+x
2
1−x
2
]
∴ 3[2tan
−1
x]−4[2tan
−1
x]+2[2tan
−1
x]=
3
π
⇒6tan
−1
x−8tan
−1
x+4tan
−1
x=
3
π
⇒2tan
−1
x=
3
π
⇒tan
−1
x=
6
π
⇒x=tan
6
π
⇒x=
3
1
Similar questions