Math, asked by saiudeep123, 7 months ago

If 3sinθ + 4cosθ = 5, then the value of sinθ =​

Answers

Answered by BrainlyPopularman
6

GIVEN :

  \bf 3 \sin( \theta)  + 4 \cos( \theta)  = 5

TO FIND :

• sinθ = ?

SOLUTION :

 \bf \implies 3 \sin( \theta)  + 4 \cos( \theta)  = 5

• We know that –

 \bf \implies  \sin^{2} ( \theta)  + \cos^{2} ( \theta)  = 1

 \bf \implies \cos^{2} ( \theta)  = 1 -  \sin^{2} ( \theta)

 \bf \implies \cos ( \theta)  = \sqrt{ 1 -  \sin^{2} ( \theta)}

• So that –

 \bf \implies 3 \sin( \theta)  + 4 \sqrt{ 1 -  \sin^{2} ( \theta)} = 5

 \bf \implies 4 \sqrt{ 1 -  \sin^{2} ( \theta)} = 5 -3 \sin( \theta)

• Square on both sides –

 \bf \implies 16 \{1 -  \sin^{2} ( \theta) \} = \{ 5 -3 \sin( \theta) \}^{2}

 \bf \implies 16 \{1 -  \sin^{2} ( \theta) \} = \{ 5 -3 \sin( \theta) \}^{2}

 \bf \implies 16 - 16 \sin^{2} ( \theta) =25 + 9 \sin^{2} ( \theta) - 30 \sin( \theta)

 \bf \implies 25 - 16 + 9 \sin^{2} ( \theta)  +16 \sin^{2}( \theta) - 30 \sin( \theta)  = 0

 \bf \implies  25\sin^{2}( \theta) - 30 \sin( \theta)  + 9 = 0

 \bf \implies  25\sin^{2}( \theta) - 15 \sin( \theta) - 15 \sin( \theta)+ 9 = 0

 \bf \implies 5\sin( \theta) \{5\sin( \theta)  - 3\}  - 3\{5\sin( \theta)  - 3\}  = 0

 \bf \implies  \{5\sin( \theta)  - 3\}  \{5\sin( \theta)  - 3\}  = 0

 \bf \implies  \{5\sin( \theta)  - 3\}^{2}  = 0

 \bf \implies 5\sin( \theta)  - 3  = 0

 \bf \implies 5\sin( \theta)  =  3

 \bf \implies \large{ \boxed{ \bf \sin( \theta)  =  \dfrac{3}{5}}}

Answered by sanchitachauhan241
8

{\sf{\underline{\underline{\pink{GIVEN :–}}}}}

  • \bf 3 \sin( \theta) + 4 \cos( \theta)

{\sf{\underline{\underline{\pink{To \  FIND :–}}}}}

  • sinθ = ?

{\sf{\underline{\underline{\pink{SOLUTION :–}}}}}

\bf \implies 3 \sin( \theta) + 4 \cos( \theta) = 5

{\sf{\underline{\underline{\pink{We \  know \  that-}}}}}

\bf \implies \sin^{2} ( \theta) + \cos^{2} ( \theta) = 1

\bf \implies \cos^{2} ( \theta) = 1 - \sin^{2} ( \theta)

\bf \implies \cos ( \theta) = \sqrt{ 1 - \sin^{2} ( \theta)}

{\sf{\underline{\underline{\pink{ So \ that –}}}}}

\bf \implies 3 \sin( \theta) + 4 \sqrt{ 1 - \sin^{2} ( \theta)} = 5

\bf \implies 4 \sqrt{ 1 - \sin^{2} ( \theta)} = 5 -3 \sin( \theta)

{\sf{\underline{\underline{\pink{ Square \  on \  both \ sides –}}}}}

\bf \implies 16 \{1 - \sin^{2} ( \theta) \} = \{ 5 -3 \sin( \theta) \}^{2}

\bf \implies 16 \{1 - \sin^{2} ( \theta) \} = \{ 5 -3 \sin( \theta) \}^{2}

\bf \implies 16 - 16 \sin^{2} ( \theta) =25 + 9 \sin^{2} ( \theta) - 30 \sin( \theta)

\bf \implies 25 - 16 + 9 \sin^{2} ( \theta) +16 \sin^{2}( \theta) - 30 \sin( \theta) = 0

\bf \implies 25\sin^{2}( \theta) - 30 \sin( \theta) + 9 = 0

\bf \implies 25\sin^{2}( \theta) - 15 \sin( \theta) - 15 \sin( \theta)+ 9 = 0

\bf \implies 5\sin( \theta) \{5\sin( \theta) - 3\} - 3\{5\sin( \theta) - 3\} = 0

\bf \implies \{5\sin( \theta) - 3\} \{5\sin( \theta) - 3\} = 0

\bf \implies \{5\sin( \theta) - 3\}^{2} = 0

\bf \implies 5\sin( \theta) - 3 = 0

\bf \implies 5\sin( \theta) = 3

\bf \implies \large{ \boxed{ \bf \sin( \theta) = \dfrac{3}{5}}}

Similar questions