Math, asked by hasini4697, 17 days ago

If 3sinθ+5cosθ=5, (0<θ<900), then the value of 5sinθ−3cosθ will be​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given that,

\rm \: 3sin\theta   + 5cos\theta   = 5 \\

On squaring both sides, we get

\rm \: (3sin\theta   + 5cos\theta)^{2}    =  {5}^{2}  \\

We know,

\boxed{ \rm{ \: {(x + y)}^{2} =  {x}^{2} +  {y}^{2} + 2xy \: }} \\

So, using this identity we get

\rm \:  {9sin}^{2}\theta   + 25 {cos}^{2}\theta   + 2 \times 3sin\theta   \times 5cos\theta   = 25 \\

We know,

\boxed{ \rm{ \: {sin}^{2}\theta +  {cos}^{2}\theta = 1 \: }} \\

So, using this identity, the above can be rewritten as

\rm \:  9(1 - {cos}^{2}\theta)+25(1 -  {sin}^{2}\theta)+ 2\times 3sin\theta  \times5cos\theta   = 25 \\

\rm \:  9 - 9{cos}^{2}\theta+25 -  25{sin}^{2}\theta+ 2\times 3sin\theta  \times5cos\theta   = 25 \\

can be further rewritten as

\rm \:  9 - 9{cos}^{2}\theta -  25{sin}^{2}\theta+ 2\times 3sin\theta  \times5cos\theta   = 0 \\

can be re-arranged as

\rm \:9{cos}^{2}\theta + 25{sin}^{2}\theta - 2\times 3sin\theta  \times5cos\theta   = 9 \\

\rm \: {(3cos\theta)}^{2}+ {(5sin\theta)}^{2}  - 2\times 5sin\theta  \times3cos\theta   = 9 \\

\rm \:{(5sin\theta)}^{2} +  {(3cos\theta)}^{2}   - 2\times 5sin\theta  \times3cos\theta   = 9 \\

\rm \:{(5sin\theta - 3cos\theta  )}^{2}  = 9 \\

\rm \:{(5sin\theta - 3cos\theta  )}^{2}  =  {3}^{2}  \\

\rm\implies \:5sin\theta - 3cos\theta \:  =  \:  \pm \: 3 \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{sin(90 \degree - x) = cosx}\\ \\ \bigstar \: \bf{cos(90 \degree - x) = sinx}\\ \\ \bigstar \: \bf{tan(90 \degree - x) = cotx}\\ \\ \bigstar \: \bf{cot(90 \degree - x) = tanx}\\ \\ \bigstar \: \bf{cosec(90 \degree - x) = secx}\\ \\ \bigstar \: \bf{sec(90 \degree - x) = cosecx}\\ \\ \bigstar \: \bf{ {sin}^{2}x +  {cos}^{2}x = 1 } \\ \\ \bigstar \: \bf{ {sec}^{2}x -  {tan}^{2}x = 1  }\\ \\ \bigstar \: \bf{ {cosec}^{2}x -  {cot}^{2}x = 1 } \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Answered by talpadadilip417
1

Step-by-step explanation:

We have

\rm 3 \sin \theta+5 \cos \theta=5

 \[ \begin{array}{l}  \rm\Rightarrow 3 \sin \theta=5(1-\cos \theta)=5 \times 2 \sin ^{2} \theta / 2 \\ \\  \displaystyle \rm\  \Rightarrow \frac{3}{5}=\frac{2 \sin ^{2} \theta / 2}{\sin \theta}=\frac{2 \sin ^{2} \theta / 2}{2 \sin \theta / 2 \cos \theta / 2}  \\ \\\displaystyle \rm \Rightarrow \tan \frac{\theta}{2}=\frac{3}{5} \end{array} \]

Now,

 \\  \[ 5 \sin \theta-3 \cos \theta =5 \times \frac{2 \tan \frac{\theta}{2}}{1+\tan ^{2} \frac{\theta}{2}}-3 \frac{\left(1-\tan ^{2} \frac{\theta}{2}\right)}{1+\tan ^{2} \frac{\theta}{2}} \]

 \\ \[ =5 \times \frac{2 \times \frac{3}{5}}{1+\frac{9}{25}}-\frac{3 \times\left(1-\frac{9}{25}\right)}{1+\frac{9}{25}} \]

 \\  = 5 \times  \frac{ \frac{6}{5} }{ \frac{25 + 9}{25} }  -  \frac{3 \times ( \frac{25 - 9}{25} )}{ \frac{25  + 9}{25} }

 \\  = 5  \times  \frac{ \frac{6}{5} }{ \frac{34}{25} }  -  \frac{ \frac{48}{25} }{ \frac{34}{25} }

 \\  = 5 \times  \frac{6}{5}  \times  \frac{25}{34}  -  \frac{48}{34}

 \\  =  \frac{150}{34}  -  \frac{48}{34}

 \\  =  \frac{75}{17}  -   \frac{ 24}{ 17}

  \\ = \frac{51}{17}

 \\ \red{  \boxed{ = 3}}

Therefore, the value of \rm 5 \sin \theta-3 \cos \theta is 3 .

Similar questions