Math, asked by dky119277, 9 months ago

If 3sin θ + 5cos θ = 5 , prove that 5sin θ - 3cos θ = 士3

Answers

Answered by De20va07
0

Step-by-step explanation:

Given:

3sin θ + 5cos θ = 5

Squaring on both sides.

(3 sinθ+5cosθ)²= 5²

(3sinθ)²+(5cosθ)²+2× 3sinθ 5cosθ= 25

[a+b= a²+b²+2ab]

9sin²θ+ 25cos²θ+30sinθcosθ= 25

9 (1-cos²θ) + 25(1-sin²θ)+30sinθcosθ=25

[sin²θ + cos²θ =1]

9-9cos²θ + 25-25sin²θ +30sinθcosθ=25

9+25 -(9cos²θ +25sin²θ -30sinθcosθ) =25

34 - (9cos²θ +25sin²θ -30sinθcosθ) =25

- (25sin²θ +9cos²θ-30sinθcosθ) =25-34

(25sin²θ+9cos²θ -30sinθcosθ) =9

(5sinθ - 3cosθ)²= 9

(5sinθ - 3cosθ)= √9

(5sinθ - 3cosθ)= ±3

L.H.S = R.H.S

Answered by sprao53413
1

Answer:

Please see the attachment

Attachments:
Similar questions