If 3sinθ+5cosθ = 5, prove that 5sinθ-3cosθ = ±3
Answers
Answered by
36
Step-by-step explanation:
GIVEN
- 3 sinθ + 5 cosθ = 5
SOLUTION
Squaring both sides, we get
- (3 sinθ + 5 cosθ)² = 5²
- 9 sin²θ + 30 sinθ cosθ + 25 cos²θ = 25
- 9 (1 - cos²θ) + 30 sinθ cosθ + 25 (1 - sin²θ) = 25
- 9 - 9 cos²θ + 30 sinθ cosθ + 25 - 25 sin²θ = 25
- 25 sin²θ - 30 sinθ cosθ + 9 cos²θ = 9
- (5 sinθ - 3 cosθ)² = 3²
- 5 sinθ - 3 cosθ = ±3
Answered by
2
Step-by-step explanation:
square both side
take common factor
convert it to Algerabic identity
Similar questions