Math, asked by Anonymous, 2 months ago

If 3sinθ+5cosθ = 5, prove that 5sinθ-3cosθ = ±3​

Answers

Answered by llPARCHOll
36

Step-by-step explanation:

GIVEN

  • 3 sinθ + 5 cosθ = 5

SOLUTION

Squaring both sides, we get

  • (3 sinθ + 5 cosθ)² = 5²
  • 9 sin²θ + 30 sinθ cosθ + 25 cos²θ = 25
  • 9 (1 - cos²θ) + 30 sinθ cosθ + 25 (1 - sin²θ) = 25
  • 9 - 9 cos²θ + 30 sinθ cosθ + 25 - 25 sin²θ = 25
  • 25 sin²θ - 30 sinθ cosθ + 9 cos²θ = 9
  • (5 sinθ - 3 cosθ)² = 3²
  • 5 sinθ - 3 cosθ = ±3
Answered by REP0RTER
2

Step-by-step explanation:

square both side

take common factor

convert it to Algerabic identity

Similar questions