Math, asked by akshay0706vhatkar, 1 year ago

if 3sin (theta) +4 cos (theta) =5 then find the value of 4 sin (theta) - 3 cos theta, also find sin theta and cos theta

Answers

Answered by ShaileshVerma
60

3 sin x + 4 Cos x=5 3/5*sin x + 4/5 cos x =1 Cos 53° * sin x + sin 53° * cos x=1 Sin(53°+x)= Sin (90°) 53° + x = 90° x=37° 4 sin 37° - 3 cos 37°= 4*3/5-3*4/5 =0

Answered by lublana
35

Answer:

4 sin\theta-3 cos\theta=0

sin\theta=\frac{3}{5} cos\theta=\frac{4}{5}

Step-by-step explanation:

We are given that

3 sin\theta+4 cos\theta=5

We have to find the value of 4 sin\theta-3 cos\theta , sin\theta and cos\theta

\frac{3}{5}sin\theta+\frac{4}{5}cos\theta=1

Comparing with the identity

sin x cos y +cos x sin y=sin(x+y)

Then we get cos y =\frac{3}{5} and siny =\frac{4}{5}

x= \theta

sin^{-1}\frac{4}{5}=53^{\circ} and cos^{-1}\frac{3}{5}=53^{\circ}

Substituting values in the given formula then we have

sin(53^{\circ}+\theta)=1

53+\theta=sin^{-1}(1)

We know that sin^{-1}=90^{\circ}

Therefore, \theta+53=90

\theta=90-53=37^{\circ}

\theta=37^{\circ}

The value of 4sin\theta-3cos\theta

=4\times sin37^{\circ}-3 cos37^{\circ}

=4\times \frac{3}{5}-3\times \frac{4}{5}

=0

Hence, the value of 4sin\theta-3cos\theta=0

sin\theta=sin37^{\circ}=\frac{3}{5}

cos\theta=cos37^{\circ}=\frac{4}{5}

Similar questions