Math, asked by vinaypatil3030, 1 year ago

If 3sin theta - 4cos theta = 0. then , find the values of tan theta , sec theta & cosec theta.

Answers

Answered by mustaphaismail304
44

 solution

3sinФ - 4cosФ=0

3sinФ=4cosФ

⇒ sinФ/cosФ=4/3

⇒ tanФ=4/3

⇒ tanФ=4/3

then the value of

tanФ=4/3

for 1 + tan²Ф=sec²Ф

⇒ 1 + 4/3=sec²Ф

⇒√ (3+4)/3=secФ

⇒ secФ=√7/3

for cosec²Ф=cot²Ф+1

⇒cosec²Ф=3/4+1

cosecФ=√7/4

Answered by Swarup1998
2

tan\theta=\dfrac{4}{3},sec\theta=\dfrac{5}{3},cosec\theta=\dfrac{5}{4}

Step-by-step explanation:

Here, 3\:sin\theta-4\:cos\theta=0

\Rightarrow 3\:sin\theta=4\:cos\theta

\Rightarrow tan\theta=\dfrac{4}{3}

Then, vertical is 4 and base is 3.

So, hypotenuse is \sqrt{4^{2}+3^{2}}

=\sqrt{16+9}=\sqrt{5}=5

Now, sec\theta

=\dfrac{hypotenuse}{base}

=\dfrac{5}{3}

and cosec\theta

=\dfrac{hypotenuse}{vertical}

=\dfrac{5}{4}

#SPJ3

Similar questions