Math, asked by priyasaininipp, 3 months ago

If√3sinA-cosA=0and.0<A<90findthevalueofA.​

Answers

Answered by anindyaadhikari13
7

Required Answer:-

Given:

  • √3 sin(x) - cos(x) = 0

To find:

  • The value of x.

Solution:

Given that,

➡ √3 sin(x) - cos(x) = 0

➡ √3 sin(x) = cos(x)

➡ √3 = cos(x)/sin(x)

➡ √3 = 1/tan(x)

➡ tan(x) = 1/√3

From Trigonometry Ratio Table,

➡ tan(x) = tan(30°)

➡ x = 30°

Hence, the value of x is 30°

Trigonometry Ratio Table:

\sf Trigonometry\: Value \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A &amp; \bf{0}^{ \circ} &amp; \bf{30}^{ \circ} &amp; \bf{45}^{ \circ} &amp; \bf{60}^{ \circ} &amp; \bf{90}^{ \circ} \\ \\ \rm sin A &amp; 0 &amp; \dfrac{1}{2}&amp; \dfrac{1}{ \sqrt{2} } &amp; \dfrac{ \sqrt{3}}{2} &amp;1 \\ \\ \rm cos \: A &amp; 1 &amp; \dfrac{ \sqrt{3} }{2}&amp; \dfrac{1}{ \sqrt{2} } &amp; \dfrac{1}{2} &amp;0 \\ \\ \rm tan A &amp; 0 &amp; \dfrac{1}{ \sqrt{3} }&amp;1 &amp; \sqrt{3} &amp; \rm  \infty  \\ \\ \rm cosec A &amp; \rm  \infty  &amp; 2&amp; \sqrt{2} &amp; \dfrac{2}{ \sqrt{3} } &amp;1 \\ \\ \rm sec A &amp; 1 &amp; \dfrac{2}{ \sqrt{3} }&amp; \sqrt{2} &amp; 2 &amp; \rm  \infty  \\ \\ \rm cot A &amp; \rm  \infty  &amp; \sqrt{3} &amp; 1 &amp; \dfrac{1}{ \sqrt{3} } &amp; 0 \end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}

Relationship Between Trigo Functions:

  • sin(x) = 1/cosec(x)
  • cos(x) = 1/sec(x)
  • tan(x) = 1/cot(x)
  • sin(x)/cos(x) = tan(x)
Answered by Anisha5119
4

Answer:

Heya mate here's the answer Mark as brainliest pleaseeeeee follow up

Attachments:
Similar questions