Math, asked by shizukaminamoto143, 4 months ago

If 3sin@ - 4cos@ = 0 then find the value of tan@, sec@, cosec@, where @ is an acute angle.

Answers

Answered by tyrbylent
0

Answer:

Step-by-step explanation:

3sinβ - 4cosβ = 0 ( 0° < β < 90° )

3sinβ = 4cosβ

\frac{sin\beta }{cos\beta } = \frac{4}{3}

tanβ = \frac{4}{3}

sec²β = 1 + tan²β ⇒ secβ = \sqrt{1+tan^2 \beta }

secβ = \sqrt{\frac{25}{9} } = \frac{5}{3}

csc²β = 1 + cot²β

cotβ = \frac{1}{tan\beta } = \frac{3}{4}

csc²β = 1 + (  \frac{3}{4} )² = \frac{25}{16}

cscβ = \frac{5}{4}

Similar questions