If :3sine +4 case and y=3cose - 4 sine then prove that x2 + y2 = 25.
Answers
Step-by-step explanation:
Given :-
x= 3sine +4 cose and y=3cose - 4sine
To find:-
If x= 3sine +4 case and y=3cose - 4 sine then prove that x^2 + y^2 = 25.
Solution:-
Given that :
x= 3sine +4 cose
On squaring both sides
x^2 = (3sine +4 cose)^2
It is in the form of (a+b)^2
Where, a = 3 sine and b = 4 cose
We know that
(a+b)^2 =a^2+2ab+b^2
=>x^2 = (3sine)^2+2(3sine)(4cose)+(4cose)^2
x^2 = 9 sin^2 e +24 sine Cose +16 Cos^2 e----(1)
And
y=3cose - 4 sine
On squaring both sides then
y^2 = (3cose - 4 sine)^2
It is in the form of (a-b)^2
Where, a = 3 cose and b = 4 sine
We know that
(a-b)^2 =a^2-2ab+b^2
=>y^2 = (3cose)^2-2(3cose)(4sine)+(4sine)^2
y^2 = 9cos^2e -24sinecose +16sin^2e------(2)
On adding (1)&(2) then
x^2+y^2=
9 sin^2 e +24 sine Cose +16 Cos^2 e+9cos^2e -24sinecose +16sin^2e
x^2+y^2 = 9sin^2e+9cos^2e+16sin^2e+16cos^2e
x^2+y^2 = 9(sin^2e+cos^e)+16(sin^2e+cos^2e)
We know that
Sin^2 A + Cos^2 A = 1
=>x^2 +y^2 = 9(1)+16(1)
=>x^2 +y^2 = 9+16
x^2+y^2 = 25
Answer:-
If x= 3sine +4 case and y=3cose - 4 sine then prove that x^2 + y^2 = 25.
Used formulae:-
- (a+b)^2 =a^2+2ab+b^2
- (a-b)^2 =a^2-2ab+b^2
- Sin^2 A + Cos^2 A = 1