If 3sinx-5cosx = 4, Find the value of 5sinx-3cosx
Answers
Answered by
0
Answer:
Step-by-step explanation:
Given 3sinx+5cosx=5 ----(1)
On Squaring both sides of the equation (1) , we get
(3sinx+5cosx)²=5²
=> (3sinx)²+(5cosx)²+2(3sinx)(5cosx)=25
By\: algebraic\: identity:\:\\\boxed{(a+b)^{2}=a^{2}+b^{2}+2ab}
=> 9sin²x+25cos²x+2(3sinx)(5cosx)=25
=> 9(1-cos²x)+25(1-sin²x)+2(3sinx)(5cosx)=25
By\: Trigonometric\: identities:\:\\\boxed{i)sin^{2}A=1-cos^{2}A\\ii)cos^{2}A=1-sin^{2}A}
=> 9-9cos²x+25-25sin²x+2(3sinx)(5cosx)=25
=> -9cos²x-25sin²x+2(3sinx)(5cosx)=25-9-25
=> -9cos²x-25sin²x+2(3sinx)(5cosx)=-9
On multiplying both sides by (-1) , we get
=> 9cos²x+25sin²x-2(3sinx)(5cosx)=9
=> (3cosx)²+(5sinx)²-2(3cosx)(5sinx)=3²
=> (3cosx-5sinx)²=3²
By\: algebraic\: identity:\:\\\boxed{(a-b)^{2}=a^{2}+b^{2}-2ab}
=> 3cosx-5sinx =±3
Similar questions