If 3sinx+5cosx=5 then find the value of 5sinx-3cosx
Answers
Answered by
9
heya...!!!!
3sinx + 5cosx = 5
=> (3sinx + 5cosx)² = 5²
=> 9sin²x + 25cos²x + 30sinxcosx = 25
=> 9sin²x + 9cos²x + 16cos²x + 30sinxcosx = 25
=> 9(sin²x + cos²x) + 16cos²x + 30sinxcosx = 25
=> 9 + 16cos²x + 30sinxcosx = 25
=> 16cos²x + 30sinxcosx - 16 = 0
=> 8cos²x + 15sinxcosx - 8 = 0
=> 8(1 - sin²x) + 15sinxcosx - 8 = 0
=> 8 - 8sin²x + 15sinxcosx - 8 = 0
=> 15sinxcosx - 8sin²x = 0
=> 15cosx = 8sinx
=> tanx = 15/8
secx = √(1 + tan²x)
=> secx = √(1 + 225/64)
=> secx = √289/64
=> secx = 17/8 = 1/cosx
=> cosx = 8/17
sinx = √1 - cos²x)
=> sinx = √(1 - 64/289)
=> sinx = √(289 - 64)/289
=> sinx = √225/289
=> sinx = 15/17
now,
5sinx - 3cosx
=> 5×15/17 - 3×8/17
=> 75/17 - 24/17
=> 51/17
=> 3
3sinx + 5cosx = 5
=> (3sinx + 5cosx)² = 5²
=> 9sin²x + 25cos²x + 30sinxcosx = 25
=> 9sin²x + 9cos²x + 16cos²x + 30sinxcosx = 25
=> 9(sin²x + cos²x) + 16cos²x + 30sinxcosx = 25
=> 9 + 16cos²x + 30sinxcosx = 25
=> 16cos²x + 30sinxcosx - 16 = 0
=> 8cos²x + 15sinxcosx - 8 = 0
=> 8(1 - sin²x) + 15sinxcosx - 8 = 0
=> 8 - 8sin²x + 15sinxcosx - 8 = 0
=> 15sinxcosx - 8sin²x = 0
=> 15cosx = 8sinx
=> tanx = 15/8
secx = √(1 + tan²x)
=> secx = √(1 + 225/64)
=> secx = √289/64
=> secx = 17/8 = 1/cosx
=> cosx = 8/17
sinx = √1 - cos²x)
=> sinx = √(1 - 64/289)
=> sinx = √(289 - 64)/289
=> sinx = √225/289
=> sinx = 15/17
now,
5sinx - 3cosx
=> 5×15/17 - 3×8/17
=> 75/17 - 24/17
=> 51/17
=> 3
Answered by
1
Answer:Plusminus 3
Step-by-step explanation:
Similar questions