Math, asked by sunitachoudhary6036, 11 months ago

If 3tan theta -1 =0 then find sin theta and cos thet and cot theta

Answers

Answered by sujeetkumar701144
0

Answer:

tan=1÷3 draw a triangle then find its hypotenuse base and height is given b=1 h=3

Answered by Anonymous
42

Given:

3 \tan( \theta )   - 1 = 0

Find:

 \sin( \theta ) =?  \\   \cos( \theta )  = ? \\  \cot( \theta )  = ?

━━━━━━━━━━━━

Solution :-

3 \tan( \theta )  - 1 = 0 \\  \implies \:  3\tan( \theta )  = 1 \\  \implies \:  \tan( \theta )  =  \dfrac{1}{3}

We know

 \tan( \theta )  =  \dfrac{opposite}{adjacent}

thus,

 \tan( \theta )  =  \dfrac{ab}{bc}  \\  =>  \dfrac{1}{3}  =  \dfrac{AB}{BC}

We can say,

AB= 1x

BC =3x

━━━━━━━

By applying Pythagoras theorem, we get,

 {AC}^{2}  =  {AB}^{2}  +  {BC}^{2}  \\  = >  {AC}^{2}  =  {1}^{2}  +  {3}^{2}  \\   =  >  {AC}^{2}  = 1 + 9 = 10 \\  =  > AC =  \sqrt{10}

━━━━━━━━━━━

 \sin( \theta )  =  \dfrac{opposite}{hypotenuse}  \\  \implies \sin( \theta) =  \dfrac{AB}{BC}

\pink{\boxed{\boxed{sin(\theta)= \dfrac{1}{\sqrt10}}}}

━━━━

 \cos( \theta )  =  \dfrac{adjacent}{hypotenuse}  \\  =  > cos \theta \:  =  \dfrac{BC}{AC}

\pink{\boxed{\boxed{cos(\theta)= \dfrac{3}{\sqrt10}}}}

━━━━

 \cot( \theta )  =  \dfrac{adjacent}{opposite}  \\  \implies \:  \cot( \theta ) =  \dfrac{BC}{AB}

\pink{\boxed{\boxed{cot(\theta)= \dfrac{3}{1}}}}

Attachments:
Similar questions