If 3tan²θ - 4√3 tanθ + 3 = 0, then find tanθ.
Answers
Answered by
2
3tan²@ - (3√3+√3)tan@ +3 =0,
3tan²@ - 3√3tan@ - √3tan@ +3 =0,
3tan@(tan@-√3) -√3(tan@-√3)=0,
(tan@-√3) (3tan@-√3) =0,
if
tan@-√3=0,
then
tan@=√3,
tan@=tan60°,
@=60°,
when
3tan@-√3=0,
tan@=√3/3,
tan@=1/√3,
tan@=tan30°,
@=30°
3tan²@ - 3√3tan@ - √3tan@ +3 =0,
3tan@(tan@-√3) -√3(tan@-√3)=0,
(tan@-√3) (3tan@-√3) =0,
if
tan@-√3=0,
then
tan@=√3,
tan@=tan60°,
@=60°,
when
3tan@-√3=0,
tan@=√3/3,
tan@=1/√3,
tan@=tan30°,
@=30°
Similar questions