Math, asked by taniya1312, 1 year ago

If 3tanA= 4'then value of √secA-cosecA÷secA+cosecA

Answers

Answered by josimagic
8

Answer

The value of √secA-cosecA÷secA+cosecA  = 1/7                                                                                                                  

Explanation

It is given that,

3tanA= 4

tanA = 4/3 = opposite side /adjacent side

Therefore hypotenuse^{2} = 4^{2} +  3^{2} = 25

                      hypotenuse = 5

cosecA  = \frac{hypotenuse }{opposite side} = \frac{5}{4}

secA =\frac{hypotenuse }{adjacent side} = \frac{5}{3}


\sqrt{\frac{secA-cosecA}{secA+cosecA} } = \sqrt{\frac{\frac{5}{3} -\frac{5}{4} }{\frac{5}{3} +\frac{5}{4} } }

                                              =  [20 - 15]/[20 + 15] =5/35 =1/7

Similar questions