Math, asked by jacky43, 9 months ago

if ( 3x + 1 /2 ) (3x - 1/2 ) = 9x^2 - p​
plz give the answer​

Answers

Answered by mysticd
2

 \Big(3x + \frac{1}{2} \Big)\Big(3x + \frac{1}{2} \Big) = 9x^{2} - p

 \implies (3x)^{2} - \Big(\frac{1}{2}\Big)^{2} = 9x^{2} - p

/* By Algebraic Identity */

 \boxed {\pink{ (a+b)(a-b) = a^{2} - b^{2} }}

 \implies \cancel {9x^{2}} - \frac{1}{4}= \cancel {9x^{2}} - p

 \implies - \frac{1}{4}=  - p

 \implies \frac{1}{4}=  p

Therefore.,

 \red { Value \: p } \green { = \frac{1}{4}}

•••♪

Answered by Anonymous
4

\bf{\underline{\underline{\bigstar\bigstar\: Equation :}}}\\

\:

  • \footnotesize{\Big( 3x + \dfrac{1}{2}\Big)\Big(3x - \dfrac{1}{2} \Big) = {9x}^{2} - p}\\

\:

\bf{\underline{\underline{\bigstar\bigstar\: To \: Find :}}}\\

\:

  • Value of p

\:

\bf{\underline{\underline{\bigstar\bigstar\:Formula \: use :}}}\\

\:

  • \footnotesize{(a + b)(a - b) = {a}^{2} - {b}^{2} }\\

\:

\bf{\underline{\underline{\bigstar\bigstar\: Solution :}}}\\

\:

\footnotesize{\Big( 3x + \dfrac{1}{2}\Big)\Big(3x - \dfrac{1}{2} \Big) = {9x}^{2} - p}\\

\footnotesize{\implies {\Big( 3x\Big)}^{2} {\Big( - \dfrac{1}{2} \Big)}^{2} = {9x}^{2} - p}\\

\footnotesize{\implies {9x}^{2} - \dfrac{1}{4} = {9x}^{2} - p}\\

\footnotesize{\implies {9x}^{2} - {9x}^{2} - \dfrac{1}{4} = - p}\\

\footnotesize{\implies - \dfrac{1}{4} = - p}\\

\footnotesize{\implies \dfrac{1}{4} = p}\\

\:

\bold{Value \: of \: p = \dfrac{1}{4}}\\

Similar questions