Math, asked by aadie16, 1 year ago

If 3x+1/3x=3, find : 27x^3+1/27x^3.

Answers

Answered by pulkitraina260ovri2y
11
please mark brainliest
Attachments:

aadie16: u r my best.It isbthe right answer.Thnk uuuuuuuii.
Answered by Salmonpanna2022
4

Step-by-step explanation:

 \bf \underline{Given-} \\

 \sf{3x +  \frac{1}{3x} = 3 } \\

 \bf \underline{To\: find-} \\

 \sf{ the \:value \: of  : \:  {27x}^{3}   + \frac{1}{ {27x}^{3} }  =  \:  ?} \\

 \bf \underline{Solution-} \\

\textsf{We have,}\\

 \sf{3x +  \frac{1}{3x} = 3 } \\

\textsf{Cubing on both sides, we get}\\

 \sf{ \bigg(3x +  \frac{1}{3x} \bigg)^{3}  = (3 {)}^{3}  } \\

\textsf{★Now, comparing this expression with (a+b)³, we get}\\

  \sf{ \:  \:  \:  \: a = 3x \: and \: b  =  \frac{1}{3x}. } \\

★\textsf{Using identity (a+b)³=a³+b³+3ab(a+b),we get}\\

 \sf{ \bigg(3x +  \frac{1}{3x} \bigg)^{3}  = (3 {)}^{3}  } \\

 \sf{ \implies \: (3x {)}^{3}  +   \bigg(\frac{1}{3x}  \bigg) ^{3} + 3(3x) \bigg( \frac{1}{3x} \bigg) \bigg(3x +  \frac{1}{3x}    \bigg) = 27} \\

 \sf{ \implies \: 27x ^{3}  + \frac{1}{27x ^{3} }+ 3(3x) \bigg( \frac{1}{3x} \bigg) \bigg(3x +  \frac{1}{3x}    \bigg) = 27} \\

 \sf{ \implies \: 27x ^{3}  + \frac{1}{27x ^{3} }+ 3( \cancel{3x}) \bigg( \frac{1}{ \cancel{3x}} \bigg) \bigg(3x +  \frac{1}{3x}    \bigg) = 27} \\

 \sf{ \implies \: 27x ^{3}  + \frac{1}{27x ^{3} }+ 3 \bigg(3x +  \frac{1}{3x}    \bigg) = 27} \\

\textsf{★Since 3x +$\frac{1}{3x}$ = 3 (Given)}\\

 \sf{ \implies \: 27x ^{3}  + \frac{1}{27x ^{3} }+ 3 (3)= 27} \\

 \sf{ \implies \: 27x ^{3}  + \frac{1}{27x ^{3}  } + 9= 27} \\

 \sf{ \implies \: 27x ^{3}  + \frac{1}{27x ^{3}  } = 27 - 9} \\

 \sf{ \implies \: 27x ^{3}  + \frac{1}{27x ^{3}  } = 18} \\

 \bf \underline{Answer-} \\

 \bf \underline{Hence, the\: value\:of : \: 27x ^{3}  + \frac{1}{27x} ^{3}  \: is \:18.}  \\

Similar questions