Math, asked by topibajaman, 1 month ago

if 3x-1/3x =5, find 81x⁴+1/81x⁴

Answers

Answered by priyasamanta501
1

\tt {\underline{ \underline{ \purple{✠Answer:-}}}}

Formula used:

 \sf{(a  -   \frac{1}{a} )^{2}  =  {a}^{2}  +  { (\frac{1}{a} )}^{2}   -  2}

Solution :

 \sf{(3x +  \frac{1}{3})^{2}  = (3x) ^{2}   +  \frac{1}{( {3x})^{2} } - 2 }

⟹ \sf{( {5})^{2}  = 9 {x}^{2}  +  \frac{1}{9 {x}^{2}  } - 2 }

⟹ \sf{25  + 2 = 9 {x}^{2}  +  \frac{1}{ {9x}^{2} } }

⟹ \sf{27 = 9 {x}^{2}  +  \frac{1}{ {9x}^{2} } }

Now,

 \tt{(9 {x}^{2} +  \frac{1}{9 {x}^{2} }  ) ^{2}  = (9x^{2})^{2} +  (\frac{1}{9 {x}^{2} } )^{2}   + 2 }

⟹ \tt{(27) ^{2}  = 81 {x}^{4}  +  \frac{1}{81 {x}^{4} }  + 2}

⟹ \tt{729 - 2 = 81 {x}^{4}  +  \frac{1}{81 {x}^{4} } }

⟹  \bf \red{727 = 81 {x}^{4}  +  \frac{1}{81 {x}^{4} } }

Answered by Salmonpanna2022
4

Step-by-step explanation:

 \bf \underline{★Given-} \\

 \rm{3x -  \frac{1}{3x}  = 5} \\

 \bf \underline{★To \: find-} \\

 \rm{the \: value \: of \:  :81 {x}^{4} +  \frac{1}{81 {x}^{4} }  =  \: ? } \\

 \bf \underline{★Solution-} \\

\textsf{We have,} \\

\rm{3x -  \frac{1}{3x}  = 5} \\

\textsf{Squaring on both sides, we get}

 \rm{ \bigg(3x  -  \frac{1}{3x}  \bigg) ^{2}  = (5 {)}^{2} } \\

\textsf{Now, comparing the given expression with (a-b)², we get}

 \:  \:  \:  \:  \:  \rm{a = 3x \: and \: b =   \frac{1}{3x} } \\

\textsf{Using bionomial identity (a-b)² = a²-2ab+b², we have} \\

 \rm{ \bigg(3x  -  \frac{1}{3x}  \bigg) ^{2}  = (5 {)}^{2} } \\

 \rm{\implies \: (3x {)}^{2} - 2(3x) \bigg( \frac{1}{3x} \bigg) +  \bigg(\frac{1}{3x}  \bigg)^{2}  = 25  } \\

 \rm{\implies \:9x^{2}  - 2( \cancel{3x}) \bigg( \frac{1}{ \cancel{3x}}  \bigg) +  \frac{1}{9 {x}^{2} }  = 25} \\

 \rm{\implies \:9 {x}^{2} - 2 +  \frac{1}{9x^{2} }   = 25} \\

 \rm{\implies \:9 {x}^{2}  +  \frac{1}{9 {x}^{2} } = 25 + 2  } \\

 \rm{\implies \:9 {x}^{2} +  \frac{1}{9 {x}^{2} } = 27  } \\

\textsf{★Again, squaring on both sides, we get} \\

.

 \rm{ \bigg(9 {x}^{2}  +  \frac{1}{9 {x}^{2} } \bigg)^{2} = (27 {)}^{2}   } \\

\textsf{Now, comparing the given expression with (a+b)², we get} \\

  \:  \:  \:  \:  \:  \: \rm{a = 9 {x}^{2}  \: and \: b =  \frac{1}{9 {x}^{2} } } \\

\textsf{Using bionomial identity (a+b)² = a²+2ab+b², we have} \\

 \rm{ \bigg(9 {x}^{2}  +  \frac{1}{9 {x}^{2} } \bigg)^{2} = (27 {)}^{2}   } \\

 \rm{ \implies(9 {x}^{2} {)}^{2}  + 2(9 {x}^{2}) \bigg( \frac{1}{9 {x}^{2} }  \bigg) +  \bigg( \frac{1}{9 {x}^{2} } \bigg )^{2}    } = (27 {)}^{2}  \\

 \rm{ \implies81 {x}^{4} + 2( \cancel{9 {x}^{2}}  ) \bigg( \frac{1}{ \cancel{9 {x}^{2}} } \bigg) +   \frac{1}{81 {x}^{4} }   = 729} \\

\rm{ \implies81 {x}^{4} +  2  +   \frac{1}{81 {x}^{4} }   = 729} \\

\rm{ \implies81 {x}^{4} +    \frac{1}{81 {x}^{4} }   = 729 - 2} \\

\rm{ \implies81 {x}^{4} +    \frac{1}{81 {x}^{4} }   = 727 } \\

 \bf{Hence, the  \: value  \: of \:  : 81 {x}^{4}  +  \frac{1}{81 {x}^{4} }  \: is \: 727.} \\

Similar questions